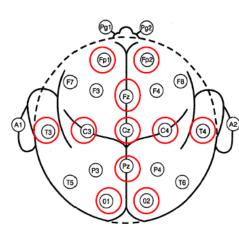


Neuro-monitoring in Hypoxic ischemic Encephalopathy

Scope

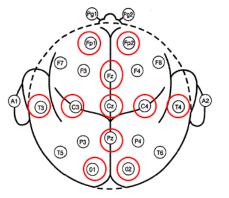
- Importance of Neuro-monitoring in HIE
- Tools
 - Neurological Examination
 - Conventional cEEG
 - Amplitude integrated EEG
 - Near Infra-red Spectroscopy
 - MRI brain
 - MR spectroscopy
 - Ultrasonography and Dopplers
 - Heart rate variability, Biomarkers and VEP/SEP



Introduction

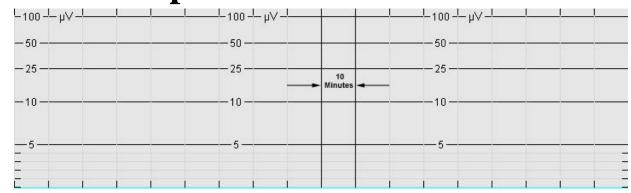
- HIE-significant risk for adverse outcomes
- Neuro-monitoring –Brain function
 - Functional activity/Structural /Oxygenation/Blood Flows/Metabolites
 - Continuous/Real time/Intermittent
- Provides critical diagnostic information
- Real time assessment of irreversible neuronal loss/injury
- Individualised Neuroprotective and Neuro-restorative therapy
- Prognostic Information

Conventional cEEG


- Spot EEG/ cEEG (24 h or more)/Video EEG
- Electrographic Seizures
- Prognostication based on background
- American Clinical Neurophysiology guidelines
 - Neonatal depression due to Perinatal Asphyxia
 - cEEG for 24 hrs to screen for seizures/ for 24 h after last electrographic seizure
- Gold standard for seizure detection
 - Electro-clinical dissociation
 - Degree on encephalopathy

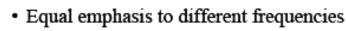
Conventional cEEG

• Electrographic Seizures

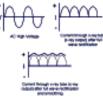

- Avoid over-treating non-epileptic movements or undertreating true seizures.
- Benefits of treating sub-clinical seizures in HIE
- Reduction of dose and duration of AEDs
- High Electrographic activity –risk factor for mortality/Poor NDO
- Background
 - Normal
 - Excessive Discontinuity
 - Low amplitude/Burst Suppression
 - Asymmetry-lateralised brain injury

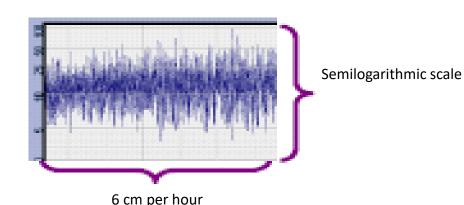
EEG Background	Neurological Sequelae
Normal Severe abnormalities [†] Moderate abnormalities [‡]	≤10% ≥90% ~50%
 *Based primarily on data reported in references 401, 402, and 404 and includes both full-term and premature infants. [†]Burst-suppression pattern, prolonged (>20-second) interburst inter- val, marked voltage suppression, and electrocerebral silence. [‡]Voltage asymmetries and "immaturity." 	

Amplitude Integrated EEG (aEEG)



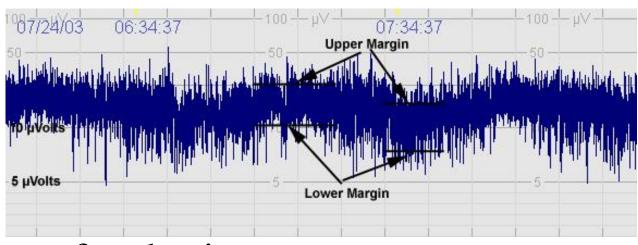
- •Modification of raw EEG
- •Special Wide band Filter-<2hz to >15Hz
- •Semi-logarithmic amplitude compression
 - Linear between 0 and 10 mcv
 - Logarithmic from 10 to 100 mcv
- •Peak-to-peak Rectification/Monophasic
- •Time Compression


aEEG Signal Processing


- Amplification of EEG signal
 from P3/P4
- Filtering:
 - < 2Hz, > 15Hz: Sweating and muscle artifact
 - Asymmetric band pass filtering

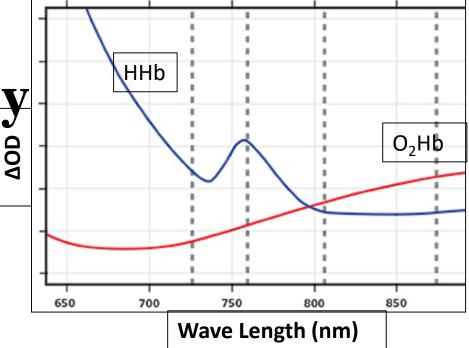
Rectification and smoothing

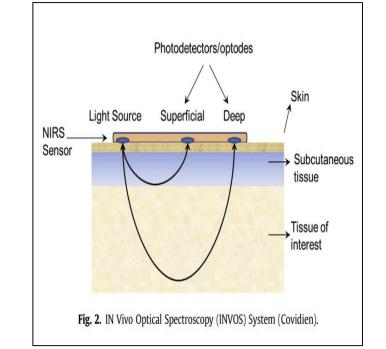
 Of EEG wave

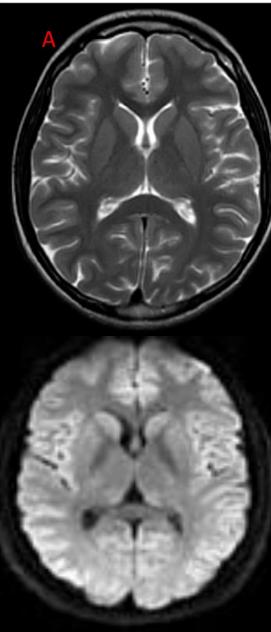


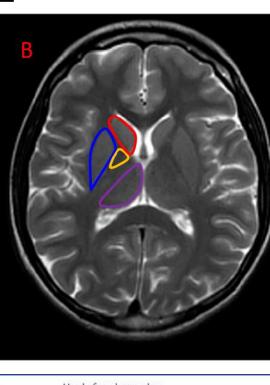
Amplitude Integrated EEG (aEEG)

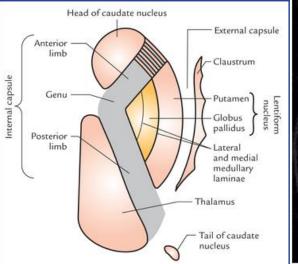
- Hellstrom Westas/Al Naqeeb
- Global Electrocortical Activity
- Limited number of electrodes
- Global activity only
- Will not localize lesion/May not see focal seizures

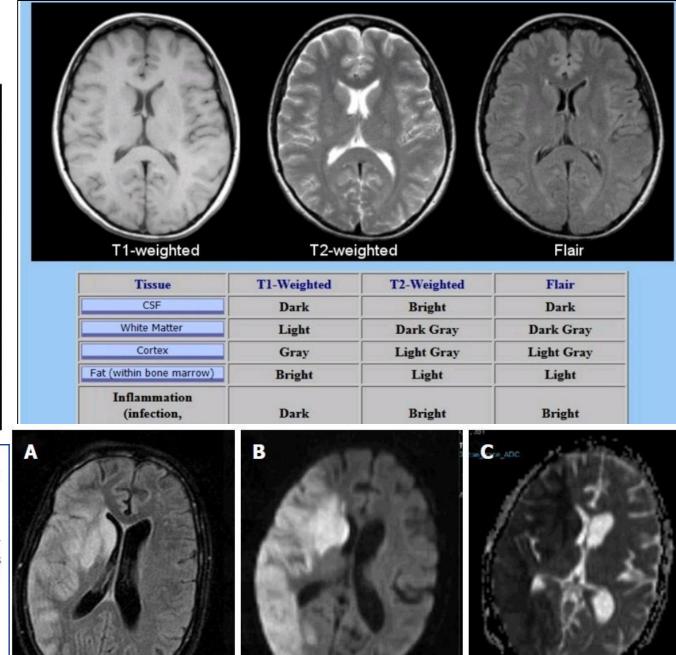

• Poor Outcome


- Poor background pattern within 6 h
- Delayed onset of SWC after 36 hours after birth
- In infants with good outcome-background pattern normalises by 24-36 hours when treated with normothermia and by 48-72 hours when treated with hypothermia

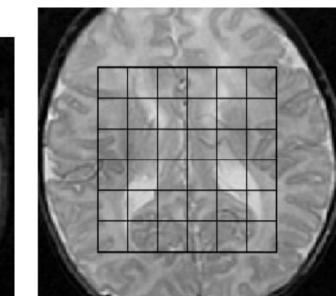

Near Infra-red Spectroscopy

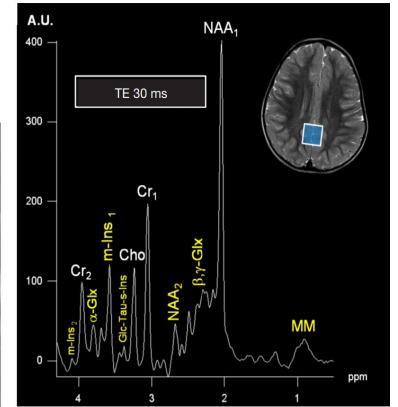

- Detector emits infrared light
- Absorbed differentially by hemoglobin
- Residual light reflected back-detectors
- Calculates regional oxygen saturation (rSO2)
- Fractional tissue oxygen extraction (FTOE)
- Balance between O2 Delivery and consumption
 - FTOE=[(SaO2–rSO2)/SaO2]
- In HIE
 - Higher rSO2
 - With TH Inc rSO2 and low FTOE (dc utilization)
- Prognosis





MRI Brain





MR Spectroscopy

- Metabolic status in the tissue-often precedes anatomical changes
- Different metabolites-characteristic resonant frequencies
- X axis- chemical shift axis
- Y-axis-signal intensity
- Voxels

Sir Ganga Ram Hospital

Miscellaneous

- Cranial USG
- Cranial Dopplers
- Heart Rate Variability-Autonomic
- Evoked Potentials-VEP/SEP
- Biomarkers
 - Blood
 - CSF