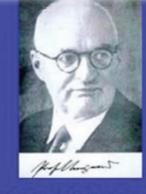


SCOPE

History

- Life Cycle and composition
- Function of components
- Review of Evidence
 - Role of Surfactant in SDD
 - Surfactant vs CPAP
 - Early vs Delayed
 - Types of surfactant and comparative studies
 - Mode of Delivery-INSURE/InRecSure
 - LISA/MIST/LMA/Nebulization/Pharyngeal
 - Surfactant and Inhaled steroids
- Recommendation/Guidelines



Kurt vor mechani born sho

1.0

Peter Gr understa

Kurt von Neergaard 1887-1947

Peter Gruenwald

Gruenw

Canada

Charles Macklin 1883-1959

England

Richard Pattle 1918 - 1980

Neergaard's experiments

1929

born baby should be investigated further

1947

1950s

USA

Surface tension as a force counteracting the first breath of the newly

Resistance to aeration is due to surface tension. No idea about von

John Clements 1923 -

Effects of nerve gases on lungs

Bubbles covered by a substance from the lining layers in the lung

spiratory the newly

bunteracts

of

e in

1959

• Avery and Mead - HMD is associated with absence or late appearance of some substance which in normal subjects renders the surface capable of attaining a low surface tension when lung volume is decreased

- 3rd child of president and Jackie kennedy was born at 35 weeks and died on day 2 of life due to HMD
- This event helped focus interest on RDS and within a year trials on synthetic surfactant began

 Ist trial on synthetic surfactant –Canada and Singapore- used nebulized DPPC – No Apparent benefit-Marshall Klaus

- Graham Liggins- Obstetrician administered steroids preterm labour
 - Found- immature lambs did not die soon after birth
 - Published in 1972

1972

980

 Goran Enhorning in Stockholm and Bengt Robertso with natural surfactant – did not die soon

- Tetsuro Fujiwara tested Surfactant TA in 10 preterm gestational age of 30 weeks with BW >1500 gms
- Mean arterial oxygen tension increased from 45 to 2 radiograph

This launched the first natural bovine derived surfact for RDS in 1980

its **Tetsuro Fujiwara** 1931 lan •Surfactant TA 10 infants hest •30 wk; >1500 g •9 had PDA •2 died

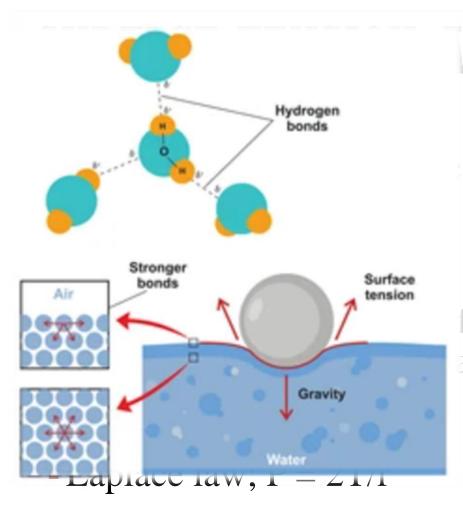
event

Stockholm, I porcine surfa Curosurf for

- Unique pro polar lipids
- First Clinica
- Randomised treatment wi ventilation a
- Significant r bronchopuln

CUrstedt - RObertson SURFactant

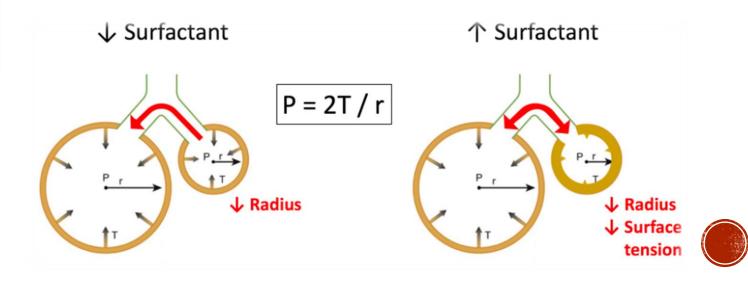
Bengt Robertson and Tore Curstedt

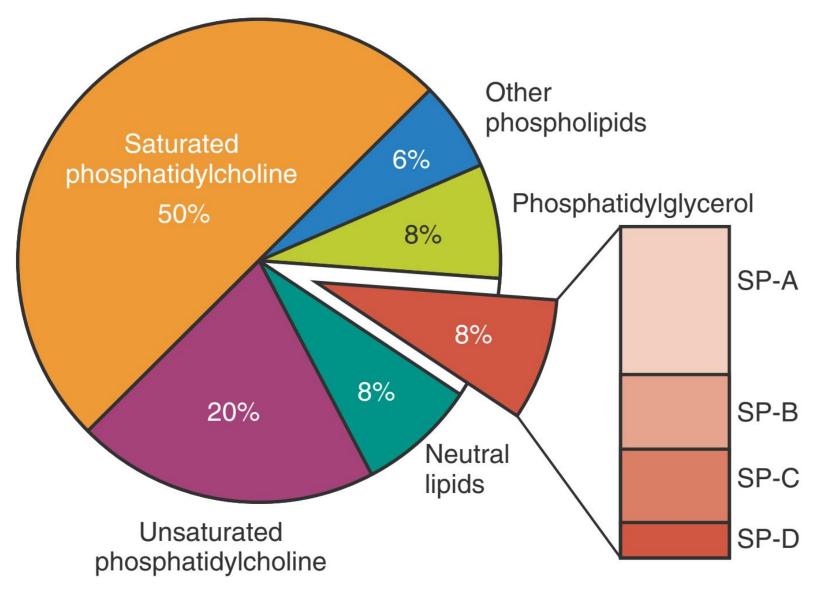

ogether produced a ertson surfactant or

aphy leaving only 0 mg/mL a drug company. age - 10 hours to nechanical

eath or

Collaborative European Multicenter Study Group. Surfactant replacement therapy for severe neonatal respiratory distress syndrome: An international randomized clinical trial. Pediatrics 1988




ND SURFACTANT

e between the attractive forces on molecules at an

face film that resists expansion of the bubble and act surface area.

COMPOSITION

SURFACTANT PROTEINS

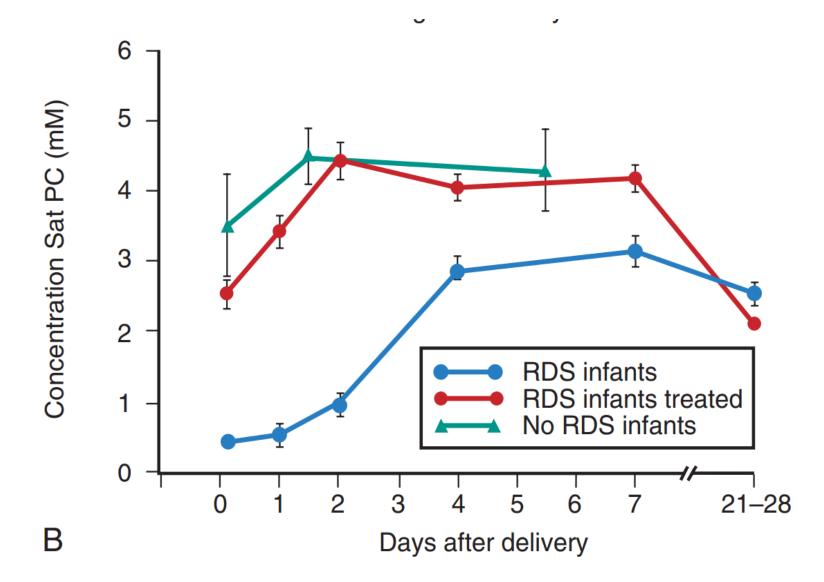
PROT EIN	STRUCTURE	FUNCTION
SP-A	 Water-soluble 36-kDa- collectin Not critical to regulation of surfactant metabolism. 	 Innate host defense protein/regulator of inflammation Binds to multiple pathogens - GBS, Staph aureus, and HSV 1. Facilitates phagocytosis by macrophages Patients with a deficiency of SP-A have not been identified Polymorphisms A/W with increased risk for RDS, BPD/ bronchiolitis.
SP-D	 43 kDa - collectin with structural similarities to SP-A. Immune function 	 Innate host defense molecule by binding pathogens and facilitating their clearance. Animal studies- decreased the ventilator-mediated inflammation. SP-D deficiency in neonates has not been described.


SP-B	 Small hydrophobic proteins 2%-4% to the surfactant mass. 8-kDa protein before it enters lamellar bodies for co-secretion with the phospholipids 	 Facilitates surface adsorption of lipids Genetic absence - lethal respiratory failure
SP-C	 Hydrophobic 4-kDa protein Responsible for progressive interstitial lung disease and emphysema later in life. 	• Work cooperatively with SP B to optimize rapid adsorption and spreading of phospholipids on a surface and reduce Surface tension.

SYNTHESIS AND SECRETION

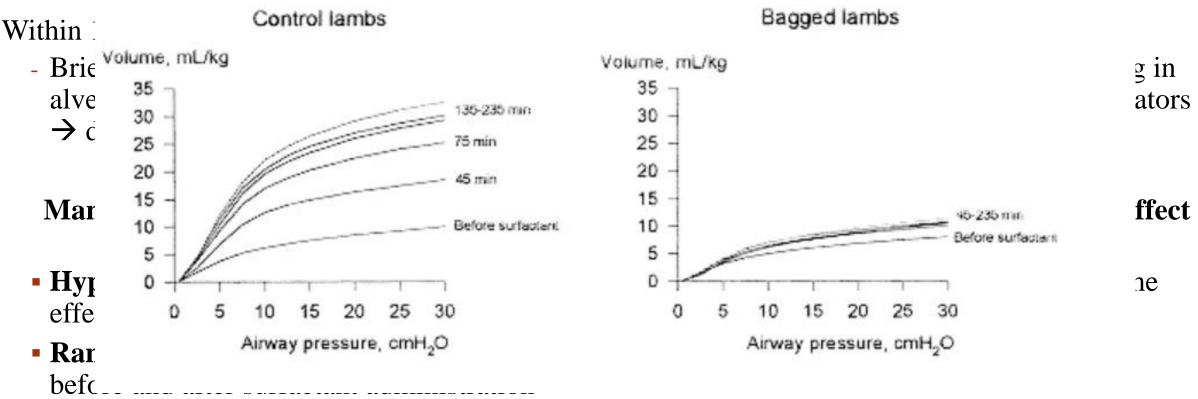
- Specific enzymes within the ER use glucose, phosphate, and fatty acids as substrates for phospholipid synthesis
- Assembled and stored in the lamellar bodies, (concentric) → extruded into the fluid layer lining the alveoli by exocytosis
- Unravel into Tubular myelin

- Hydrophobic fatty acyl groups of the phospholipids extend into the air, whereas the hydrophilic polar head groups bind water
- New surfactant enters the surface film and "used" surfactant leaves in the form of small vesicles, which is cleared from the airspaces



SURFACTANT POOL SIZE

- Increasing surfactant pool size better is the compliance of lung
- Term newborn animals: 100 mg/kg
- Very preterm with severe RDS: <5 mg/kg
- Adult: 4 mg/kg
- Preterm have 5% of amount of surfactant in term

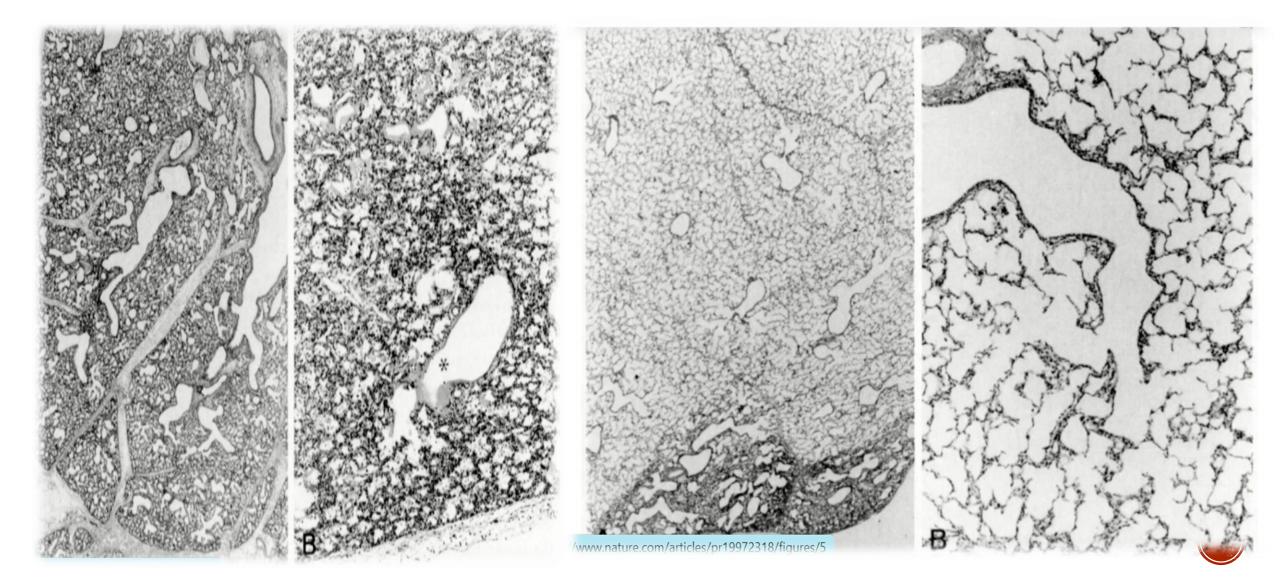

REVIEW OF EVIDENCE

Role of Surfactant in SDD

- Surfactant vs CPAP
- Early vs Delayed
- Types of surfactant and comparative studies
- Mode of Delivery-INSURE/InRecSure
- LISA/MIST/LMA/Nebulization/Pharyngeal
- Surfactant and Inhaled steroids

• Proph '

• Outcome: Lung mechanics(Expiratory P-V curves), Histology of lung, Response to Surfactant


	Response to surfactant				
Treatment	Optimal	Suboptimal	Unsatisfactory		
Bagging at birth	0	2	3		
Controls	2	2	1		

* Values are number of lambs.

Lung with suboptimal response

Lung with optimal response

COCHRANE	Synthetic vs NO Surfactant – 1998 (6 studies)	Prophylactic protein Free surfactant- 2010 (7 studies)	Prophylactic animal derived – 2010 (9 studies)
Pneumothorax	RR 0.64, 95% CI 0.55, 0.76	RR 0.67, 95% CI 0.50, 0.90	RR 0.40, 95% CI 0.29, 0.54
PIE	RR 0.62, 95% CI 0.54, 0.71	RR 0.68, 95% CI 0.50, 0.93)	RR 0.46, 95% CI 0.36, 0.59
Mortality	RR 0.73, 95% CI 0.61, 0.88	RR 0.70, 95% CI 0.58, 0.85	RR 0.60, 95% CI 0.47, 0.77
BPD	RR 0.75, 95% CI 0.61, 0.92	RR 1.06, 95% CI 0.83 1.36	RR 0.91, 95% CI 0.79, 1.05
BPD/ death	RR 0.73, 95% CI 0.65, 0.83	RR 0.90, 95% CI 0.78,1.04;	RR 0.80, 95% CI 0.72, 0.88

□INCREASES the risk of

Pulmonary hemorrhage (RR 3.28, 95% CI 1.50, 7.16).
Patent ductus arteriosus (RR 1.11, 95% CI 1.00, 1.22), (Protein Free prophylactic surfactant)

 Apnea of prematurity (RR1.20, 95% CI 1.09, 1.31) (Synthetic prophylactic surfactant)

Prior to 2013, prophylactic surfactant was recommended for the smallest babies as it improved survival in clinical trials from the pre-CPAP era.

Soll RF, Morley CJ. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2001

• Role of Surfactant in SDD

Surfactant vs CPAP

- Early vs Delayed
- Types of surfactant and comparative studies
- Mode of Delivery-INSURE/InRecSure
- LISA/MISA/MIST/LMA/Nebulization/Pharyngeal
- Surfactant and Inhaled steroids

Trial	Intervention	N=	Primary Outcome
COIN 2008	CPAP vs Intubation	610[25-28weeks]	Death or BPD RR -0.80 (95% CI, 0.58 to 1.12)
SUPPORT 2010	Early CPAP f/b selective surfactant vs Early Surfactant f/b MV	1316[24-27+6 weeks]	Death or BPD RR -0.95; (95% CI 0.85 to 1.05)
CURPAP 2010	Prophylactic Surfactant vs Early CPAP f/b selective Surfactant	208[25 -28 weeks]	Need for MV on day 5 RR -0.95 [95% CI: 0.64 –1.41];
VON DRM 2011	PS vs I-S-X vs CPAP f/b selective surfactant	648[26-29+6]	Death or BPD PS vs ISX- RR 0.78 (95% CI: 0.59 – 1.03) PS vs CPAP- RR 0.83 (95% CI: 0.64- 1.09)
NEOCOS UR (2010)	CPAP/INSURE vs oxygen by hood/MV and surfactant	256 [800 to 1500 gms]	Requirement for mechanical ventilation 29.8 vs 59.4% RR- 0.59 (95%CI 0.43- 0.83

Name	Primary out	y outcome			Secondary outcomes	
SUPPORT	Death or BPD comparable in two groups				No difference in • Need for supplemental oxygen • Need for mechanical ventilation • Air leak • IVH, NEC, ROP or use of postnatal steroids	
COIN	Death or BPD comparable in two g Survivors with oxygen comparable Surfactant usage: 38% in CPAP gro	9			 No difference in Need for supplemental oxygen Need for mechanical ventilation IVH, NEC, ROP or use of postnatal steroids Air Leak Pneumothorax 9.1% vs 3.0% (p = 0.001) 	
VON	Intubated in 1st hour surfactant	PS 99% 98.6	INSURE 98.6% 98.2	CPAP 17.9% 45.1	No difference in • Mortality, BPD • Air leaks, Pulm hemorrhage • PDA, NEC, PVL, Sepsis, ROP	
CURPAP	Need for mechanical ventilation within 5 days comparable in two groups Surfactant usage in CPAP group 48.5%			 No difference in: Mortality BPD Air Leaks IVH, PDA or ROP, NEC or PVL Use of postnatal Steroids 		
Neocosur	Significantly higher number required mechanical ventilation 29.8% vs 50.4% (p 0.001) Higher surfactant usage 27.5% vs 46.4% ($p = 0.002$)			Comparable • Mortality • BPD • Air leaks • PDA, IVH, NEC, ROP, Sepsis Higher nasal damage in CPAP group 8.4% vs 0% (p = 0.00		

Name	Surfactant usage in CPAP arm (%)	Primary outcome BPD or death, n/N (%)		Risk ratio (95% CI)
		CPAP	control	
SUPPORT	67	323/663 (49)	333/653 (54)	0.91 (0.83-1.01)
COIN	38	104/307 (34)	118/303 (39)	0.80 (0.58-1.12)
VON	45	68/223 (31)	76/209 (37)	0.83 (0.64-1.09)
CURPAP	74	23/105 (22)	22/103 (21)	1.03 (0.61-1.72)
Neocosur	37	18/131 (14)	24/125 (19)	0.72 (0.41-1.25)
Overall	67	539/1429 (38)	573/1393 (41)	0.92 (0.84-1.00)

- After 2013, with increased use of antenatal steroids and early initiation of CPAP, surfactant was reserved for infants showing clinical signs of RDS
- Early initiation of CPAP in smallest infants may avoid the harmful effects of intubation and mechanical ventilation during the transitional phase.

Rojas-Reyes MX, Morley CJ, Soll R. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database of Systematic Reviews 2012

The overall aim is to avoid invasive MV if possible whilst endeavouring to give surfactant as early as possible in the course of RDS once it is deemed necessary

• Role of Surfactant in SDD

Surfactant vs CPAP

Early vs Delayed

- Types of surfactant and comparative studies
- Mode of Delivery-INSURE/InRecSure
- LISA/MISA/MIST/LMA/Nebulization/Pharyngeal
- Surfactant and Inhaled steroids

EARLY RESCUE VS LATE

• Early:

- Within 2-3 hours of birth.
- Have been defined variably
- Presence of lung fluid in early administration helps in uniform distribution of surfactant.

Late:

• After 2 hours

EARLY VERSUS DELAYED SELECTIVE SURFACTANT TREATMENT FOR NEONATAL RESPIRATORY DISTRESS SYNDROME - COCHRANE 2012

- **Population**:Preterm infants with RDS requiring intubation and assisted ventilation at less than three hours of life
- Intervention: Early selective surfactant (via ET tube) within the first three hours of life with delayed selective surfactant when they develop worsening established RDS

Primary outcomes

- 1. Neonatal mortality (mortality < 28 days of age) from any cause.
- 2. Mortality prior to hospital discharge (from any cause).
- 3. BPD-oxygen requirement at 28 to 30 days of age.
- 4. BPD or death prior to 28 to 30 days of age.
- 5. CLD (use of supplemental oxygen at 36 weeksPMA).
- 6. CLD (use of supplemental oxygen at 36 weeks' PMA or death prior to 36 weeks

 Studies included were: European Study 1992; Konishi 1992; OSIRIS 1992; Gortner 1998; Plavka 2002; Lefort 2003

✓ Reduction with early treatment in :

6 RCTs N=3050

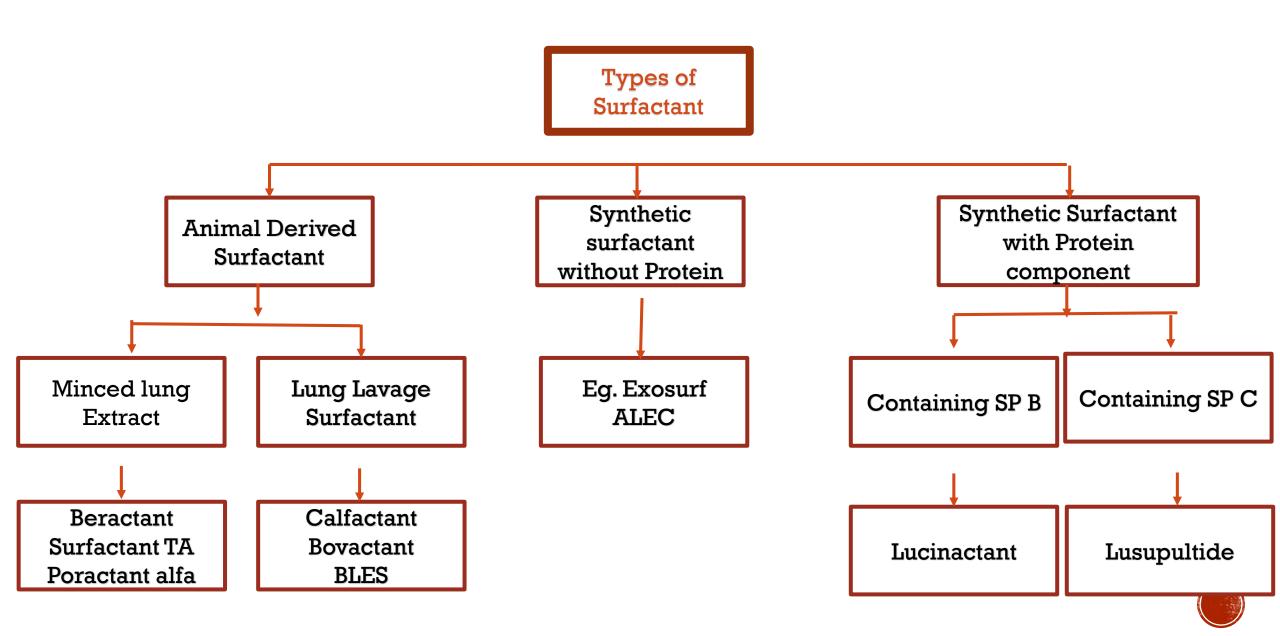
Neonatal mortality (RR 0.84; 95%CI - 0.74 to 0.95)

• CLD (typical RR 0.69; 95% CI 0.55 to 0.86)

• CLD or death at 36 weeks (typical RR 0.83; 95% CI 0.75 to 0.91)

Bahadue FL, Soll R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database of Systematic Reviews 2012,

- Intubated infants randomized to early selective surfactant administration also
 - Decreased risk of pneumothorax (RR 0.69; 95% CI 0.59 to 0.82; RD -0.05; 95% CI 0.08 to -0.03; 5 studies; 3545 infants)
 - Pulmonary interstitial emphysema (RR 0.60; 95% CI 0.41 to 0.89; RD -0.06; 95% CI 0.10 to -0.02; 3 studies; 780 infants)
 - Overall air leak syndromes (RR 0.61; 95% CI 0.48 to 0.78; RD -0.18; 95% CI -0.26 to -0.09; 2 studies; 463 infants)
 - BPD or death at 28 days (RR 0.94; 95% CI 0.88 to 1.00; RD-0.04; 95% CI-0.07 to 0.00; 3 studies; 3039 infants).


- Role of Surfactant in SDD
- Surfactant –Prophylactic/Early vs late
- Types of surfactant and comparative studies
- Mode of Delivery-INSURE/InRecSure
- LISA/MISA/MIST/LMA/Nebulization/Pharyngeal
- Surfactant and Inhaled steroids

TYPES OF SURFACTANT

- The first successful animal model of SRT Enhorning and Robertson in the 1970s (Enhorning 1972).
- They administered a crude animal derived surfactant extract obtained from lavage of the lungs of mature rabbits directly into the trachea of immature rabbit
- The first successful experience with humans –1980 (Fujiwara 1980)
- 10 preterm infants with severe RDS requiring assisted ventilation
- Improved dramatically with Surfactant TA, a modified bovine surfactant extract, containing SP-B and SP-C.

ANIMAL DERIVED SURFACTANT

- Recovered from alveolar lavages or from saline extracts of minced lungs.
- Contain phospholipids, neutral lipids, and hydrophobic protein (SP)-B and SP-C.
- Organic solvent extraction step removes nonessential proteins
- Extra lipid can be added or removed
- Poractant alfa
 - Liquid chromatography to extract only polar lipids
 - Contains the highest total concentrations of phospholipids and SP-B
 - Highest concentration/Volume

COMPARISON OF ANIMAL DERIVED SURFACTANTS FOR THE PREVENTION AND TREATMENT OF RDS — COCHRANE 2015

□<u>Objectives</u>

To compare the effect of administration of different animal-derived surfactant extracts

Primary outcomes

- 1. Neonatal mortality (mortality < 28 days of age) from any cause.
- 2. Mortality prior to hospital discharge (from any cause).
- Chronic lung disease (in all infants): (a)oxygen requirement at 28 to 30 days of age; (b). oxygen requirement at 36 weeks' postmenstrual age.
- 4. Death or chronic lung disease: (a). death or oxygen requirement at 28 to 30 days of age; (b). death or oxygen requirement at 36 weeks' postmenstrual age.

Bovine lung lavage surfactant extract [calfactant, CLSE (BLES) or SF-RI 1 (bovactant)] vs. modified bovine minced lung surfactant extract (beractant or surfactant TA).

- Treatment studies: Seven studies were identified (Attar 2004; Baroutis 2003; Bloom 1997; Bloom 2005; Hammoud 2004; Lam 2005; Yalaz 2004).
- □Bovine lung lavage surfactant extract (calfactant, CLSE (BLES) or SF RI 1 (bovactant)) vs. porcine minced lung surfactant extract (poractant alfa).
- Treatment studies: One study was identified (Baroutis 2003).
- Bovine lung lavage surfactant extract (calfactant, CLSE (BLES) or SF-RI 1 (bovactant)) vs. porcine lung lavage surfactant (Surfacen).
- Treatment studies: No studies were identified.

- □Modified bovine minced lung surfactant extract (beractant or surfactant TA) vs. porcine lung lavage surfactant (Surfacen).
- Treatment studies: One study was identified (Sanchez-Mendiola 2005).
- Porcine minced lung surfactant extract (poractant alfa) vs. porcine lung lavage surfactant (Surfacen).
- Treatment studies: No studies were identified

- Bovine lung lavage surfactant extract vs. modified bovine minced lung surfactant extract
- Seven treatment studies
- Death or BPD at 36 weeks PMA
 - RR 0.95, 95% CI 0.86 to 1.06;
 - RD -0.02, 95% CI -0.06 to 0.02; (high quality evidence)
- ■Modified bovine minced lung surfactant extract (beractant or surfactant TA) vs. porcine minced lung surfactant extract (poractant alfa).
- Treatment studies: Nine studies were identified.
- (Baroutis 2003; Didzar 2012; Fujii 2010; Gharehbaghi 2010; Halahakoon 1999; Karadag 2014; Malloy 2005; Ramanathan 2004; Speer 1995).

Modified bovine minced lung surfactant extract vs Porcine minced lung surfactant extract:

	RR(95%CI)	RD(95% CI)	No. of Studies	No. Of Babies	Quality of evidence
Risk of mortality prior to hospital discharge	1.44(1.04-2)	0.05(0.01-0.10)	9 studies	901	Moderate
Increase in Death or Oxygen requirement at 36 weeks PMA	1.30(1.04-1.64)	0.11(0.02-0.20)	3 studies	448	Moderate
Receiving more than one dose of surfactant	1.57(1.29-1.92)	0.14(0.08-0.20)	6 studies	786	
PDA requiring treatment	1.86(1.28-2.70)	0.28(0.13-0.43)	3 studies	137	

	Porcine vs bovine (mg/kg)	Result
Neonatal Mortality (<28 days)	100 vs 100[2 studies]	RR 1.20, 95% CI 0.55 to 2.62
Mortality prior to hospital discharge (from any cause)	100 vs 100 [3 studies]	RR 1.10, 95% CI 0.61 to 1.96
	>100 vs 100 [7 studies]	RR 1.62, 95% 1.11 to 2.38
Oxygen requirement at 28 to 30 days of age	100 vs 100 [2 studies]	RR 0.96, 95% CI 0.73 to 1.25;
	>100 vs 100 [2 studies]	RR 1.01, 95% 0.76 to 1.34
Oxygen requirement at 36weeks'postmenstrual age	100 vs 100 [2 studies]	RR 0.94, 95% CI 0.65 to 1.37
	>100 vs 100 [6 studies]	RR 1.08, 95% CI 0.84 to 1.38;
Death or oxygen requirement at 36 weeks' postmenstrual age	100 vs 100 [1 study]	RR 1.04, 95% CI 0.76 to 1.43;
	>100 vs 100 [3 studies]	RR 1.39, 95% 1.08 to 1.79

SYNTHETIC SURFACTANT WITHOUT PROTEIN

- Originally synthesized first commercial products containing only DPPC.
- Newer products have added spreading agents.
- Exosurf consists of 85% DPPC, 9% hexadecanol, and 6% tyloxapol (a spreading agent).
- ALEC (pumactant), (not manufactured) 7:3 mixture of DPPC and phosphatidylglycerol.

#ALEC: Artificial Lung Expanding Compound

SYNTHETIC SURFACTANT WITH PROTEIN

- □Lucinactant (Surfaxin), which contains a mimic of SP-B called sinapultide or KL4 peptide(21-amino acid peptide consisting of lysines (K) and leucines (L) arranged in the sequence KLLLLKLLLKLLLKLLLK)
- The drawbacks was
 - Its high viscosity at room temperature and a gel formulation, which required heating, mixing and subsequent cooling to body temperature before administration.
 - Also, the dose-equivalent volume was approximately 2.5 times that of poractant alfa.
- Surfaxin was withdrawn from the European market in 2006, and production was completely stopped by the US manufacturer in 2015
- Lucinactant is currently under development as an aerosolized surfactant (Aerosurf), having reached preclinical testing
- **Lusupultide (Venticute)** contains SP-C analogues, recombinant SP-C.

STAR(SURFAXIN THERAPY AGAINST RDS)

- Hypothesis: lucinactant is non inferior to an animal-derived surfactant- Poractant alfa
- 22 NICUs in Canada, France, Hungary, Poland, Portugal, Spain, UK and US
- Population: GA 24-28 weeks ; 600-1250 gms intubated at birth
- Intervention: Double blind trial; Lucinactant 175 mg/kg (5.8 mL/kg, 30 mg/mL) in 30 mins
- Control: Poractant alfa 175 mg/kg (2.2 mL/kg, 80 mg/mL),
- Sample size: 248 in each group; Could not be completed due to slow recruitment
- **Primary Outcome**: Survival without BPD through day 28
- **Statistical analysis**: Lower margin of inferiority **-14.5%**

		Odds Ratio	Lucinactant	Poractant	
		(95% CI)	Rate (%)	Rate (%)	P Value
All-cause mortality					
At Day 14		0.75 (0.33, 1.71)	10.9	13.7	0.50
At Day 28		0.64 (0.29, 1.41)	11.8	16.1	0.27
At 36 weeks PMA		0.77 (0.37, 1.60)	16.0	18.5	0.48
Mortality or BPD					
At Day 28		0.68 (0.36, 1.31)	62.2	66.9	0.25
At 36 weeks PMA	-	1.06 (0.56, 1.99)	35.3	33.1	0.86
BPD	_				
By Day 28		0.85 (0.45, 1.63)	62.2	63.7	0.63
By 36 weeks PMA		1.32 (0.69, 2.51)	35.3	29.8	0.40
Airleaks at Day 7 (overall)		1.35 (0.52, 3.52)	9.2	7.3	0.54
Neuro Scan abnormality					
IVH (overall)	-	1.06 (0.55, 2.02)	38.7	37.9	0.87
PVL (worst stage) -	- -	0.43 (0.14, 1.38)	4.2	8.9	0.15
Necrotizing enterocolitis		0.89 (0.41, 1.95)	13.4	14.5	0.77
Retinopathy of prematurity	-	1.03 (0.56, 1.89)	31.9	31.5	0.92
Acquired sepsis	■	0.59 (0.30, 1.15)	45.4	51.6	0.12
Apnea		0.62 (0.34, 1.15)	65.5	75.0	0.13
Pulmonary hemorrhage		0.69 (0.24, 2.01)	5.9	8.1	0.50
Patent ductus arteriosus	-	0.93 (0.52, 1.68)	42.9	43.5	0.81
0	0.5 1 1.5 2 2.5 3 3.5				

SELECT (SAFETY AND EFFECTIVENESS OF LUCINACTANT VERSUS EXOSURF IN A CLINICAL TRIAL)

- **Hypothesis:** synthetic surfactant Lucinactant would be superior to colfosceril palmitate.
- **Population:** GA: 24 and 32 weeks,600 and 1250 g, Intubated at birth(N=1294;527/509/258)
- Intervention: lucinactant at 175 mg of phospholipid per kg (5.8 mL/kg, 30 mg/mL), colfosceril palmitate at 67.5 mg of phospholipids per kg (5.0 mL/kg, 13.5mg/ml), beractant at 100 mg of phospholipid per kg (4.0 mL/kg, 25 mg/ mL).
- Primary Outcome: Development of RDS at 24 hours and the occurrence of death related to RDS through 14 days of age

Fig 3. Continued.

THIRD GENERATION - CHF5633

- Compound combining SP-B analog and SP-C analog in a 1:1 DPPC
- Developed by Tore Curstedt and Jan Johansson in collaboration with Chiesi Farmaceutici
- Animal studies -delay in catabolism and enhanced phospholipid recycling compared to poractant alfa.
- Decreased proinflammatory cytokine synthesis in macrophages
- The first phase-I human trial(under the guidance of Christian Speer) in 40 infants with 27–34 weeks GA reports rapid and sustained improvement in oxygen requirement for 98% of the infants, good tolerability and no unexpected adverse events.
- A phase-II multicenter double-blinded clinical trial comparing CHF5633 with poractant alfa is ongoing.-

A Double Blind, Randomized, Controlled Study to Evaluate CHF 5633 (Synthetic Surfactant) and Poractant Alfa in Neonates With Respiratory Distress Syndrome

- Population:24 to 29 weeks
- N= 113 analyzed [56 vs 57]
- Primary outcome: Oxygen Requirement and Ventilatory Support -- SpO2/FiO2 Ratio analyzed at Post-treatment Day 1: 30 min, at 1h, 3h, 6h, 12h, 18h, 24 h; Day 2, 3, 5, and 7

SURFACTANT - II

- Role of Surfactant in SDD
- Surfactant vs CPAP
- Early vs Delayed
- Types of surfactant and comparative studies
- Mode of Delivery-INSURE/InRecSure
- LISA/MISA/MIST/LMA/Nebulization/Pharyngeal
- Guidelines- NNF/AAP/CPS/European

INSURE

- When Surfactant was given prophylactically some are treated who do not need it
- While waiting until RDS develops- Treatment is delayed!!
- Mechanical ventilation definitely harms volutrauma, barotrauma, biotrauma sets the stage for chronic inflammatory processes leading to BPD
- Swede Lars Victorin was the first to treat infants with short-time intubation and surfactant instillation in Kuwait, where no neonatal ventilators were available in the 1980s.

Intubate- SURfactant- Bag and Mask ventilation- Extubate

Victorin LH, Deverajan LV, Curstedt T, Robertson B. Surfactant replacement in spontaneously breathing babies with hyaline membrane disease–a pilot study. Neonatology. 1990.

- Six randomized trials, (INSURE vs later, selective administration of surfactant, followed by continued MV and extubation from low respiratory support.
- GA <35 weeks. And BW <2500.
- INSURE reduced
 - The need for mechanical ventilation: RR 0.67, 95% CI 0.57-0.79
 - Air-leak syndromes RR 0.52, 95% CI 0.28-0.96
 - BPD (oxygen at 28 days) RR 0.51, 95% CI 0.26-0.99.
 - A lower threshold for treatment at study entry (FiO2 <0.45) resulted in a lower incidence of air leak
 (RR 0.46, 95% CI 0.23-0.93) and BPD (RR 0.43, 95% CI 0.20-0.92).
 - A higher treatment threshold (FiO2 > 0.45) at study entry was associated with a higher incidence of patent ductus arteriosus requiring treatment (typical RR 2.15, 95% CI 1.09-4.13)

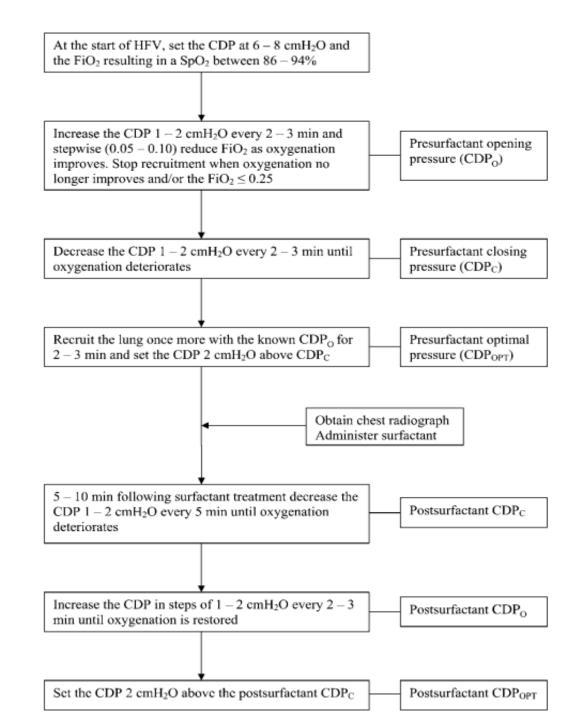
Stevens TP, Harrington EW, Blennow M, et al: Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev 2007

IN-REC-SUR-E

- IN-SUR-E might not be successful because of lung de-recruitment during intubation, which impedes surfactant distribution and efficacy
- Animal Models Lung recruitment before surfactant administration improved gas exchange and lung function
- Studies suggest volume recruitment manoeuvre improves surfactant distribution as surfactant preferentially distributes into underinflated and aerated alveolar areas while rarely reaching collapsed alveolar areas
- Principle Optimising end-expiratory lung volume before surfactant administration

Lung recruitment before surfactant administration in extremely preterm neonates with respiratory distress syndrome (IN-REC-SUR-E): a randomised, unblinded, controlled trial

Population: GA- 24 to 27+6 in 36 NICU in ITALY; who failed CPAP


Intervention: IN-REC-SUR-E via HFOV using **de Jaegere method**

Control: IN-SUR-E

Outcome: Need for mechanical ventilation in first 72 hours of life

Number: 218 infants were recruited from Nov 12, 2015, to Sept 23, 2018

	IN-SUR-E group (n=111)	IN-REC-SUR-E group (n=107)	Relative risk (95% Cl)	p value
Primary outcome				
Mechanical ventilation in the first 72 h of life	60 (54%)	43 (40%)		
Crude analysis			0.74 (0.56-0.99)	0-044
Adjusted analysis			0-75 (0-57-0-98)	0-037
Secondary outcomes				
Two doses of surfactant	58 (52%)	44 (41%)	0.79 (0.59-1.05)	0.10
In-hospital mortality*	37 (33%)	23 (21%)	0-64 (0-41-1-01)	0-055
Invasive respiratory support, days	6 (1–20)	6 (0–20)		0-56
Non-invasive respiratory support, days	35 (8–49)	40 (25-53)		0-46
Oxygen therapy, days	25 (9-52)	30 (5-63)		0-78
Moderate to severe bronchopulmonary dysplasia†	23/75 (31%)	29/86 (34%)	1-09 (0-69-1-71)	0-72
In-hospital stay, days	80 (19-108)	87 (60–107)		0-44
Pneumothorax*	7 (6%)	4 (4%)	0-59 (0-18–1-97)	0-39
Pulmonary interstitial emphysema	8 (7%)	4 (4%)	0.52 (0.16-1.67)	0-27
PDAhs	46 (41%)	56 (52%)	1.26 (0.95-1.68)	0-11
Pulmonary haemorrhage	9 (8%)	8 (7%)	0-92 (0-37-2-30)	0-86
Intraventricular haemorrhage worse than grade 2*	17 (15%)	12 (11%)	0.73 (0.37-1.46)	0-38
Periventricular leukomalacia	4 (4%)	10 (9%)	2.59 (0.84-8-02)	0-10
Sepsis‡	63 (57%)	59 (55%)	0-97 (0-77-1-23)	0-80
Necrotising enterocolitis	10 (9%)	11 (10%)	1.13 (0.50-2.55)	0-77
Retinopathy of prematurity worse than grade 2	12 (11%)	15 (14%)	1.30 (0-64-2-64)	0-47
Postnatal steroids	39 (35%)	40 (37%)	1.06 (0.75–1.51)	0-73

Need for mechanical ventilation within the first 72 h of life occurred in

43 (40%) of 107 infants in the IN-REC-SUR-E group VS

60 (54%) of 111 infants in the IN-SUR-E group

Adjusted RR 0.75 (95% CI 0.57–0.98; p=0.037) Absolute risk reduction - 14% (95% CI 1–27) NNT - 7.2 (3.7–135.0)

- Role of Surfactant in SDD
- Surfactant vs CPAP
- Early vs Delayed
- Types of surfactant and comparative studies
- Mode of Delivery-INSURE/InRecSure
- LISA/MISA/MIST/LMA/Nebulization/Pharyngeal
- Guidelines- NNF/AAP/CPS/European

LESS INVASIVE METHODS OF SURFACTANT ADMINISTRATION

- Thin catheter administration- also called MIST (minimally invasive surfactant therapy); LISA (less invasive surfactant administration)- cologne/Take care/Hobart method SurE (surfactant without endotracheal tube); MISA (minimally invasive surfactant administration); NISA (non-invasive surfactant administration).
- 2. Aerosolized or nebulized route
- 3. LMA-guided administration
- 4. Pharyngeal route

LISA

- 1992 Danish neonatologist Henrik Verder was the first to use a small-diameter gastric tube during spontaneous breathing- advantage of unlike an endotracheal tube no neonatologist would be tempted to leave a thin catheter longer than needed in the trachea
- Avoidance of mechanical ventilation by surfactant
- treatment of spontaneously breathing preterm infants (AMV): an open-label, randomised, controlled trial
 - Wolfgang Göpel*, Angela Kribs*, Andreas Ziegler, Reinhard Laux, Thomas Hoehn, Christian Wieg, Jens Siegel, Stefan Avenarius, Axel von der Wense, Matthias Vochem, Peter Groneck, Ursula Weller, Jens Möller, Christoph Härtel, Sebastian Haller, Bernhard Roth, Egbert Herting, on behalf of the German Neonatal Network
- 2011- The first KCT- AMV study of the German Neonatal Network, which included preterm infants - 26–29 weeks - statistically significant risk reduction in the need for mechanical ventilation during the first 72 h

TILL 2014

Method				Source				Gopel et al, ¹² Kanmaz et al, ¹ Dargaville et a	¹⁶ 2013 ^a
Thin catheter administration		Verder et al, ³⁶ 1992 			Kribs et 2007	al, ¹⁴ Kri 203	bs et al, ³⁰ 10	Klebermass-So et al, ¹⁷ 2013	chrehof
Aerosolized administration			orch et al, ³⁹ .997 	Berggren et a 2000 ^a 	l, ¹⁸			Minocchie 2013	eri et al, ³²
LMA-guided administration					Trevisana 2005	auto et al,	22	Attridg 2013	je et al, ³³
Pharyngeal administration	Ten Centre Study Group, ³⁴ 1987 		Dambeanu et a 1997 	l, ³⁵ Katt 200	winkel et al, ² 4 	21			
	1985 19	90 19	995	2000	2005		2010	20	13

MIST(MINIMALLY INVASIVE SURFACTANT THERAPY)

 2011- the procedure was modified by Dargaville et al. - who used a rigid adult vascular catheter (16-G Angiocath) to avoid use of the Magill forceps.

This method was named MIST and was evaluated in trials showing similar results

- Key benefits of LISA in RCTS MV/Death/BPD/Pneumothorax/IVH
- Issues
 - Sedation
 - Which catheter/Surfactant
 - Need for more than one attempt -5 30 %
 - Apnea
 - Need for PPV 12 44%

LISA vs INSURE

Surfactant therapy via thin catheter in preterm infants with or at risk of respiratory distress syndrome (Review)

Abdel-Latif ME, Davis PG, Wheeler KI, De Paoli AG, Dargaville PA

STUDIES: 16 studies (N= 2164 neonates)-

12 studies: LISA VS INSURE

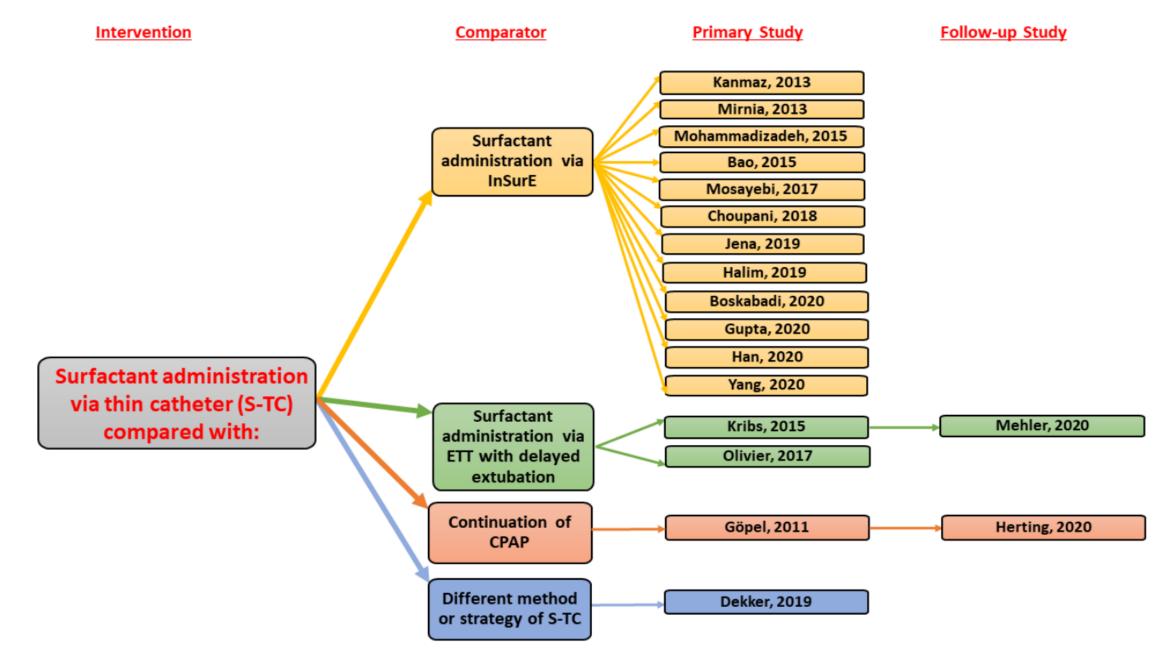
2 studies : LISA vs delayed extubation

1 study: LISA vs CPAP and rescue surfactant administration at pre-specified criteria

1 Study : Compared different strategies of surfactant administration via thin catheter.

Cochrane

Population: less than 37 weeks with or at risk of RDS


Primary outcome:

- Death/BPD
- Need for MV within 72 hours
- Air leak
- Severe IVH
- BPD
- Death or survival with disability

Secondary Outcome

- Catheter/ETT placement unsuccessful at first attempt (during trial-related intervention)
- Bradycardia
- Hypoxemia during procedure

Figure 2. Primary and follow-up studies included in the review categorised by comparison group.

Figure 5. Forest plot of comparison: 1 Trials comparing S-TC with S-ETT - overall analysis, outcome: 1.1 Death or BPD.

	Surfactant via	a catheter	Surfactant via ETT			Risk Ratio	Risk Ratio		Risk of Bias				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	Α	В	С	D	E	
1.1.1 S-TC vs INSURE													
Kanmaz 2013	22	100	32	100	18.2%	0.69 [0.43 , 1.10]		•	Ŧ	•	?	e	
Mirnia 2013a	7	66	16	70	8.8%	0.46 [0.20 , 1.06]		?	?	?	?	?	
Mohammadizadeh 2015	4	19	7	19	4.0%	0.57 [0.20 , 1.63]		?	Ŧ	?	?	?	
Bao 2015	7	47	6	43	3.6%	1.07 [0.39 , 2.93]		•	•	•	?	e	
Choupani 2018	8	52	14	52	8.0%	0.57 [0.26 , 1.25]		•	?	?	?	e	
Boskabadi 2019	1	20	1	20	0.6%	1.00 [0.07 , 14.90]		?	?	?	?	Ŧ	
Jena 2019	15	175	47	175	26.7%	0.32 [0.19, 0.55]		•	÷	•	?	Ŧ	
Gupta 2020	4	29	9	29	5.1%	0.44 [0.15 , 1.28]		•	÷	•	÷	Ŧ	
Yang 2020	1	47	0	50	0.3%	3.19 [0.13 , 76.36]		_ •	÷	Ŧ	?	Ŧ	
Subtotal (95% CI)		555		558	75.2%	0.52 [0.40, 0.68]	•						
Total events:	69		132				•						
Heterogeneity: Chi2 = 8.13, df	$f = 8 (P = 0.42); I^2$	2 = 2%											
Test for overall effect: Z = 4.8	31 (P < 0.00001)												
1.1.2 S-TC vs surfactant via	ETT with delaye	ed extubation	1										
Kribs 2015	35	107	43	104	24.8%	0.79 [0.55 , 1.13]		•	Ŧ	•	Ŧ	Ŧ	
Subtotal (95% CI)		107		104	24.8%	0.79 [0.55 , 1.13]	•						
Total events:	35		43				•						
Heterogeneity: Not applicable													
Test for overall effect: Z = 1.2	9 (P = 0.20)												
Total (95% CI)		662		662	100.0%	0.59 [0.48 , 0.73]	•						
Total events:	104		175				•						
Heterogeneity: Chi ² = 11.12, d	df = 9 (P = 0.27);	I ² = 19%					1 0.1 1 10	100					
Test for overall effect: Z = 4.8	6 (P < 0.00001)						Favours S-TC Favours S-E						
Test for subgroup differences:	Chi ² = 3.31, df =	1 (P = 0.07),	$I^2 = 69.8\%$										

	Surfactant via	a catheter	Surfactant	via ETT		Risk Ratio	Risk Ratio		Ris	k of	Bias	;
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	Α	В	С	D	Е
1.2.1 S-TC vs INSURE												
Bao 2015	8	47	10	43	4.0%	0.73 [0.32 , 1.68]		+	Ŧ	•	?	•
Boskabadi 2019	0	20	6	20	2.5%	0.08 [0.00 , 1.28]	←	?	?	?	?	+
Choupani 2018	8	52	13	52	5.0%	0.62 [0.28, 1.36]		•	?	?	?	•
Gupta 2020	3	29	6	29	2.3%	0.50 [0.14 , 1.81]		+	Ŧ	•	Ŧ	+
Jena 2019	33	175	70	175	26.9%	0.47 [0.33, 0.67]	-	+	Ŧ	•	?	+
Kanmaz 2013	30	100	45	100	17.3%	0.67 [0.46, 0.96]		+	Ŧ	•	?	•
Mirnia 2013a	13	66	16	70	6.0%	0.86 [0.45 , 1.65]		?	?	?	?	?
Mohammadizadeh 2015	2	19	3	19	1.2%	0.67 [0.13, 3.55]		?	Ŧ	?	?	?
Mosayebi 2017	8	27	7	26	2.7%	1.10 [0.47 , 2.60]		?	?	•	?	?
Yang 2020	4	47	3	50	1.1%	1.42 [0.34, 6.00]		•	Ŧ	Ŧ	?	•
Subtotal (95% CI)		582		584	68.9%	0.61 [0.50, 0.75]						
Total events:	109		179				•					
Heterogeneity: Chi ² = 8.80, d	f = 9 (P = 0.46); I	$^{2} = 0\%$										
Test for overall effect: $Z = 4$.	73 (P < 0.00001)											
1.2.2 S-TC vs surfactant via	a ETT with delay	ed extubation	1									
Kribs 2015	49	107	60	104	23.3%	0.79 [0.61 , 1.03]	-	+	Ŧ	•	Ŧ	+
Olivier 2017	7	24	19	21	7.8%	0.32 [0.17, 0.61]		+	Ŧ	•	?	?
Subtotal (95% CI)		131		125	31.1%	0.68 [0.53, 0.86]						
Total events:	56		79				•					
Heterogeneity: Chi ² = 6.59, d	f = 1 (P = 0.01); I	² = 85%										
Test for overall effect: $Z = 3$.	18 (P = 0.001)											
Total (95% CI)		713		709	100.0%	0.63 [0.54 , 0.74]	•					
Total events:	165		258				•					
Heterogeneity: Chi ² = 15.92,	df = 11 (P = 0.14)	; I ² = 31%					0.01 0.1 1 10 10	00				
Test for overall effect: $Z = 5$.	68 (P < 0.00001)						Favours S-TC Favours S-ETT					
Test for subgroup differences	s: Chi ² = 0.41, df =	= 1 (P = 0.52),	$I^2 = 0\%$									

- Meta-analyses of 14 studies significant decrease in
- Composite outcome of death or bronchopulmonary dysplasia (BPD) at 36 weeks' PMA- RR- 0.59, 95% CI 0.48 to 0.73; NNT-9 95% CI 7 to 16; 10 studies; 1324 infants; (moderate-certainty evidence);
- The need for intubation within 72 hours (RR 0.63, 95% CI 0.54 to 0.74; NNTB 8, 95% CI; 6 to 12; 12 studies, 1422 infants; moderate-certainty evidence);
- Severe intraventricular haemorrhage (RR 0.63, 95% CI 0.42 to 0.96; NNTB 22, 95% CI 12 to 193; 5 studies, 857 infants; low-certainty evidence);
- Death during first hospitalisation (RR 0.63, 95% CI 0.47 to 0.84;NNTB 20, 95% CI 12 to 58; 11 studies, 1424 infants; low-certainty evidence); and
- **BPD among survivors** (RR 0.57, 95% CI 0.45 to 0.74; RD -0.08, 95% CI -0.11 to -0.04; NNTB 13, 95% CI 9 to 24; 11 studies, 1567 infants; moderate-certainty evidence).
- No difference: in risk of air leak requiring drainage (RR 0.58, 95% CI 0.33 to 1.02; RD 0.03, 95% CI -0.05 to 0.00; 6 studies, 1036 infants; low-certainty evidence

UPCOMING STUDIES

- **OPTIMIST B trial**: MIST Vs Sham treatment in 29-32 weeks
- LPPSA: less invasive surfactant administration versus endotracheal surfactant instillation followed by limited peak pressure ventilation in preterm infants with respiratory distress syndrome in China
- **MISurf:** MISurF versus InSurE. A comparison of minimally invasive surfactant application techniques in preterm infants
- ECALMIST(Early CPAP And Large Volume Minimal Invasive Surfactant Therapy): ECALMIST versus InSurE in preterm infant < 32 weeks, multi-centre, multi-national RCT
- **LISPAP**: RCT to compare LISA VS InSURE for Poractant Alfa
- MOLISAN: modified intubation-surfactant-extubation (InSurE) technique in preterm neonates with RDS-
 - To compare surfactant application via 2 techniques
 - LISA combined with synchronised nasal intermittent positive-pressure ventilation (SNIPPV) technique (LISA + SNIPPV group): this group receives surfactant by way of SNLISA followed by nasal SNIPPV vs INSURE
- **PROLISA**: propofol versus placebo (with rescue with ketamine) before LISA
- StrAAS: stress assessment in preterms with RDS treated or not with an analgesic drug during traditional or LISA

LARYNGEAL MASK AIRWAY

- Preterm lungs are at risk of volutrauma by mechanical ventilation; laryngoscopy is still traumatic.
- LMA achieved effective ventilation during neonatal resuscitation.
- Compared with bag and mask ventilation- more effective in terms of shorter resuscitation and ventilation time and resulted in less need for endotracheal intubation.
- In 2004, surfactant administration using a LMA was first described in a case report by Brimacombe et al

Laryngeal mask airway for surfactant administration versus standard treatment methods in preterm neonates with respiratory distress syndrome: A systematic review and meta-analysis- 2021

• Six RCTs , 357 infants.

Studies included: Attridge et al (2013), Sadeghnia et al (2014), Roberts et al(2018), Pinheiro et al(2016), Gharebaghi et al(2018), Barbosa et al (2017)

Study (year)	Population, settings, surfactant	Criteria for surfactant	LMA group	Control group	Comments
Attridge et al (2013) ¹⁴	BW > 1,200 g USA Calfactant 3 mL/kg	< 72 h with radiograph and clinical diagnosis of RDS on nCPAP for at least 30 min, FiO ₂ between 0.30 and 0.60	n = 13 GA: 32 wk ^a BW: 2,130 g ^a LMA North America, San Diego Catheter followed by nCPAPAS: 54%	n = 13 GA: 33.5 wk ^a BW: 2,001 g ^a CPAP, no surfactant AS: 46%	
Sadeghnia et al (2014) ¹⁵	GA: 33–36 wk Iran Survanta 100 mg/kg	RDS symptoms within 48 h of birth, treated with CPAP with CDP equal to 5 cm H ₂ O, required FiO ₂ \geq 0.3 for more than 30 min	n = 35 GA: 34.9 wk BW: 2,352 g I-gel, 5 French catheter AS: 51%	n = 35 GA: 35 wk BW: 2,374 g InSurE protocol: yes AS: 65%	No data on premedication
Pinheiro et al (2016) ¹²	GA: 29–36.6 wk USA Calfactant 3 mL/kg	RDS between 4 and 48 h of age, nCPAP >5 cm H ₂ O plus FiO ₂ 0.30–0.60	n = 30 GA: 37% <33 wk BW: 2,118 g LMA (classic), 5 French catheter Followed by nCPAP AS: 50%	n = 30 GA: 60% <33 wk BW: 1,945 g InSurE protocol: yes AS: 53%	Atropine for LMA group Atropine and morphine for premedication in InSurE group
Barbosa et al (2017) ¹³	GA: 28–35 wk Brazil Poractant alfa 200 mg/kg	Subjects on nCPAP, silverman score ≥ 4 and/or RR >60 bpm and/or (FiO ₂) ≥ 0.40 clinical/radiological diag- nosis of RDS	n = 28 GA: 31.1 wk BW:1,515 g ^a LMA (ProSeal), 6 French silicon catheter followed by nCPAP AS: 53.8%	n = 22 GA: 31.4 wk BW: 1,495 g ^a InSurE protocol: yes AS: 77.2%	Remifentanyl and mida- zolam for premedication in InSure group
Roberts et al (2018) ¹¹	GA: 28 to <36 wk USA Poractant alfa 200 mg/kg	\leq 36 h, on nCPAP or NIPPV, FiO ₂ 0.30–0.40 for \geq 30 min and chest radio- graph and clinical pre- sentation consistent with RDS	n = 50 GA: 32.5 wk BW: 1,968 g LMA North America, San Diego Suction catheter, followed by nCPAP AS: 72%.	n = 53 GA: 32.6 wk BW: 1,995 g CPAP, no surfactant AS: 64%	Atropine and sucrose for LMA insertion
Gharehbaghi et al (2018) ¹⁶	GA: 33–37 wk BW: >1,800 g Iran Survanta 100 mg/kg	RDS based on clinical signs and radiologic findings	n = 25 GA: 32.88 wk BW: 2,078 g LMA (classic) size 1, thin catheter then nCPAP applied	n = 25 GA: 33.76 wk BW: 2,198 g InSurE protocol: yes	Fentanyl for premedication

Laryngeal mask airway for surfactant administration versus standard treatment methods in preterm neonates with respiratory distress syndrome: A systematic review and meta-analysis- 2021

- Six RCTs , 357 infants.
- Primary Outcome: Surfactant dose repeats and Fio2 requirement,
 - Data on surfactant dosing repeats four studies RR 1.64, 95% CI: 1.08–2.49
 - Fio2 pre- and post-surfactant administration (3 studies) MD 10.55, 95% CI: 5.66– 15.44, n=105, p< 0.001.

Secondary Outcome :

- Need for MV (6 RCT) LMA vs control RR 0.49, 95% CI: 0.38–0.63, NNT= 4
- Need for intubation LMA vs Control RR 0.28, 95% CI: 0.14–0.58, NNT = 1.8;

Attridge et al (2013), Sadeghnia et al (2014), Roberts et al(2018), Pinheiro et al(2016), Gharebaghi et al(2018), Barbosa et al (2017)

NEBULIZED SURFACTANT ADMINISTRATION

• The first attempts of an aerosolized surfactant came in a preliminary study in 1964 by Robillard et al., who attempted to administer an aerosol of the synthetic surfactant beta-gamma-dipalmitoyl-L-alpha-lecithin (DPL) to 11 infants with RDS

Dilemmas

- Device to deliver- Jet/Ultrasonic/Vibrating/ The capillary aerosol generating (CAG) technology
- Homogeneity of delivery
- Duration of treatment 20 mins to 2 hours
- ELB- Small-caliber airways obstruction, small tidal volumes, rapid and irregular respiratory rates
- Rate of deposition- 2 mg/kg

LISA vs OTHER STRATEGIES

JAMA | Original Investigation

Association of Noninvasive Ventilation Strategies With Mortality and Bronchopulmonary Dysplasia Among Preterm Infants A Systematic Review and Meta-analysis

Tetsuya Isayama, MD, MSc; Hiroko Iwami, MD; Sarah McDonald, MD, FRCSC, MSc; Joseph Beyene, PhD

NETWORK METANALYSIS – comparing CPAP vs INSURE vs LISA vs IPPV vs MV vs LMA vs Nebulized surfactant

• Objective : To compare 7 ventilation strategies for preterm infants

- Methods: RCT comparing ventilation strategies < 33 weeks GA within 24 hours of birth who had not been intubated.
- Primary Outcome: A composite of death or BPD at 36 weeks' PMA
- Secondary outcome Death, BPD, severe IVH and air leak by discharge
- N= 5598 infants; 30 trials

■ **RESULTS**: →

Figure 3. Primary Outcome of Bronchopulmonary Dysplasia or Death in Preterm Infants

A Death or bronchopulmonary dysplasia (composite outcome)

Source	No. of Infants	No. of Trials	Network Absolute RD per 1000 (95% CI)	Network OR (95% CI)	Favors Intervention	Favors Control	Quality of Evidence
MV (control)			pa. 2000 (2000 c)				C ,
INSURE	419	2	83 Fewer (5 fewer-160 fewer) ^a	0.71 (0.50-0.98)			Moderate
LISA	189	1	164 Fewer (57 fewer-253 fewer) ^a	0.49 (0.30-0.79)			Moderate
		3					
Nasal CPAP	2085	5	40 Fewer (24 more-99 fewer)	0.85 (0.66-1.10)			Moderate
NPPV			86 Fewer (30 more-194 fewer)	0.70 (0.42-1.13)			Low
LMA			311 More (280 fewer-539 more)	3.90 (0.25-119.88)		→	Very low
Nasal CPAP (control)							
INSURE	1186	7	41 Fewer (22 more-96 fewer)	0.83 (0.63-1.10)		_	Low
LISA			112 Fewer (16 fewer-190 fewer) ^a	0.58 (0.35-0.93) ^a			Moderate
NPPV	775	5	44 Fewer (50 more-127 fewer)	0.82 (0.53-1.24)			Low
LMA			362 More (210 fewer-639 fewer)	4.58 (0.30-141.08)		→	Low
INSURE (control)							
LISA	381	3	65 Fewer (17 more-131 fewer)	0.70 (0.44-1.09)		_	Very low
NPPV			4 Fewer (91 fewer-105 more)	0.98 (0.59-1.62)			Very low
LMA	24	1	402 More (150 fewer-713 more)	5.53 (0.37-167.35)		→	Low
LISA (control)							
NPPV			62 More (43 fewer-205 more)	1.41 (0.75-2.69)			Very low
LMA			467 More (94 fewer-778 more)	7.91 (0.49-244.67)			Low
NPPV (control)							
LMA			348 More (89 fewer-821 more)	5.68 (0.36-177.56)		→	Low
					0.2 1.	.0 10	
					OF	R (95% CI)	

Figure 5. Ranking Probability of Strategies and Surface Under the Cumulative Ranking Curve in the Network Meta-analysis of Noninvasive Ventilation Strategies for Preventing Bronchopulmonary Dysplasia or Death in Preterm Infants

Ranking, median Surface under the cumulative (95% CI) INSURE 3 (2-4) 0.66 INSURE 3 (2-4) 0.94 Nasal CPAP 4 (3-5) 0.41 NPPV 2 (1-5) 0.66 MV 5 (3-6) 0.20	A [Death or chronic lung disease							
		LISA Nasal CPAP NPPV	median (95% CI) 3 (2-4) 1 (1-3) 4 (3-5) 2 (1-5)	the cumulative ranking curve 0.66 0.94 0.41 0.66					

B Bronchopulmonary dysplasia

INSURE ISA Nasal CPAP	Ranking, median (95% CI) 2 (1-5) 1 (1-4) 4 (2-5) 3 (1-6)	Surface under the cumulative ranking curve 0.69 0.89 0.42 0.62
——— NPPV	3 (1-6)	0.62
MV	5 (3-6)	0.23
LMA	6 (1-6)	0.14

SURFACTANT AND STEROIDS – WHY ??

- Inflammation BPD
- Systemic corticosteroids correlated with serious short-term/ long-term adverse outcomes.
- Early administration of Inhaled corticosteroids by airway fewer side effects
- Airway administration of budesonide decreases BPD but increase mortality
- When combining budesonide with surfactant, the risk of BPD was demonstrated 43% reduction without increased mortality or adverse physical or neurologic outcomes.
- Several studies conflicting results.

Early intratracheal administration of corticosteroid and pulmonary surfactant for preventing bronchopulmonary dysplasia in preterm infants with neonatal respiratory distress syndrome: A meta-analysis

• 8 RCTS;

- N= 792 preterm infants 414 receiving airway administration (inhalation or instillation) of corticosteroid and PS (ICS group) and 378 given placebo plus PS (placebo control group).
- Inclusion Criteria: (1) GA < 36 weeks, and the diagnosis of RDS was confirmed; (2) Infants were randomized to receive treatment with airway administration (inhalation or instillation) of corticosteroid and PS (ICS group) or placebo plus PS (placebo control group); (3) interventions started within 1 day after birth; (4) more than one of the outcomes was reported.
- Primary Outcome: BPD incidence
- Secondary Outcome: Mortality, % of infants using PS more than one time, infection (sepsis) incidence, incidence of ROP, incidence of neurological lesions

Studer	Ennelline and anitania	Time to start	Treatment			п	
Study	Enrollment criteria	intervention	ICS group	Placebo control group	ICS	Contro	
Kuo, 2010 ^[16] Yeh, 2008 ^[17]	BW <1500 g, RDS	6 h after birth	BUD 0.25 mg/kg + PS 100mg /kg ia	PS 100 mg/kg ia	60	60	
Sadeghnia, 2018 ^[18]	GA <28 w, RDS	2 h after birth	BUD 0.5 mg (NEB, bid until day 7) + PS ia	PS ia	35	35	
Yeh, 2016 ^[19]	BW <1500 g, RDS	6 h after birth	BUD 0.25 mg/kg + PS 100 mg/kg ia	PS 100 mg/kg ia	131	134	
Zimmeman, 2000 ^[20]	BW <1300 g, RDS	3 h after birth	BDP (pMDI 1–4/day for 12 days + PS ia)	Placebo pMDI + PS ia	23	24	
Cao, 2018 ^[21]	GA <32 w, RDS needing ventilator support	Day of ICU administration	BUD 0.25 mg/kg + PS 100 mg/kg (NEB, q8h)	PS 100 mg/kg ia, Q8h	40	40	
Ke, 2016 ^[22]	GA <32 w, BW<1500 g, RDS	4 h after birth	G1: BUD (pMDI 0.25 mg/kg every day until ventilator withdraw + PS 200 mg/kg ia) G2: BUD (0.25 mg/kg) + PS 200 mg/kg ia	PS 200 mg/kg ia	G1: 46 G2: 46	-	
Pan, 2017 ^[23]	GA <32 w, BW <1500 g, RDS with II history	4 h after birth	BUD 0.2 mg/kg + PS 70 mg/kg ia	PS 70 mg/kg ia	15	15	
Dg, 2017 ^[24]	GA<37 w, BW <1500 g, RDS	8 h after birth	GA<37 w, BUD 0.25 mg/kg + PS 150 mg/kg ia	PS 150 mg/kg ia	18	28	

G2: group 2; II: intrauterine infection

SUMMARY OF RESULTS

Number of trials	Effect (95% CI)				
Number of trials	Outcome	Estimate effect			
8	BPD incidence	RR=0.56 (95% CI: 0.42-0.76)			
6	Mortality	RR=0.67 (95% CI: 0.45-0.99)			
5	Percentage of infants using PS more than one time	RR=0.55 (95% CI: 0.45-0.67)			
2	Incidence of infection	RR=0.95 (95% CI: 0.59-1.52)			
3	Incidence of retinopathy	RR=0.92 (95% CI: 0.62-1.38)			
6	Incidence of neuro-motor system impairment	RR=1.13 (95% CI: 0.92-1.39)			

GUIDELINES

Recommendations

- Babies with RDS should be given an animal-derived surfactant preparation (A1).
 - 2 A policy of early rescue surfactant should be standard (A1), but there are occasions when surfactant should be given in the delivery suite, such as when intubation is needed for stabilisation (A1).
 - 3 Babies with RDS should be given rescue surfactant early in the course of the disease. A suggested protocol would be to treat babies who are worsening when $FiO_2 > 0.30$ on CPAP pressure of at least 6 cm H₂O (**B2**).
 - 4 Poractant alfa at an initial dose of 200 mg/kg is better than 100 mg/kg of poractant alfa or 100 mg/kg of beractant for rescue therapy (A1).
 - 5 LISA is the preferred mode of surfactant administration for spontaneously breathing babies on CPAP, provided that clinicians are experienced with this technique (**B2**).
 - 6 A second and occasionally a third dose of surfactant should be given if there is ongoing evidence of RDS such as persistent high oxygen requirement and other problems have been excluded (A1).

19

CANADIAN PEDIATRIC SOCIETY(2021)

- 1. In settings, where CPAP is routinely used to stabilize, and when the rate of ANS administration has been high (>50%), **prophylactic surfactant is no longer recommended** (Grade A).
- 2. Noninvasive respiratory support (e.g., CPAP) from birth.
- 3. Early surfactant should be provided for newborns with increasing severity of RDS, demonstrated by escalating or sustained levels of oxygen requirement and other clinical or radiological indications (Grade B).
- 4. Infants with RDS whose oxygen requirements exceed FiO2 of 0.5 should receive SRT (Grade A)

CPS

- 4. Intubated infants with RDS should receive surfactant before transport (Grade B).
- 5. **Repeated dosing** Only when there is evidence of ongoing moderate to severe RDS (Grade A).
- 6. For spontaneously breathing infants on CPAP with RDS, noninvasive methods -LISA or MIST, are preferable. Factors such as clinician experience, optimal dosage, volume, and the types of surfactant available must be considered to optimize delivery method (Grade B).

NNF CPG DEC 2021

 Prophylactic surfactant should NOT be administered to preterm neonates <28 weeks gestation with RDS. They should be stabilized on CPAP and if indicated selective surfactant replacement therapy - administered.

Sub-group considerations: Clinicians may consider delivery room surfactant in <28 weeks gestation who are intubated in the delivery room for severe RDS . [SR,LCOE]

- 2. Early INSURE (within 2 hours) in < 34 weeks' gestation with established RDS and who satisfy the criteria for surfactant administration[WR,LCOE]
- 3. Surfactant may be given to preterm neonates < 34 weeks' gestation with RDS stabilized on CPAP, who require a PEEP of ≥ 6 cm H2O and a FiO2 > 0.30 to maintain SpO2 > 91% [WR, Expert consensus]

- 4. **LISA may be preferred over INSURE** for surfactant administration in preterm neonates < 34 weeks' gestation with RDS
- **5. LMA should NOT be used** for surfactant instillation outside research context in preterm neonates < 37 weeks' gestation with RDS
- **6. Poractant-α (200 mg/kg) may be used** for treating preterm neonates < 34 weeks' gestation with RDS and who satisfy the criterion for surfactant administration
- 7. Early intra-tracheal corticosteroids may NOT be used as an adjunct to surfactant in the treatment of preterm neonates < 34 weeks' gestation with RDS.

AAP (2014)

1. Preterm infants born at <30 weeks gestation who need **mechanical ventilation** because of severe RDS should be given (Strong Recommendation).

2. Using CPAP immediately after birth with **subsequent selective surfactant administration** considered as an alternative to routine intubation with prophylactic or early surfactant administration in preterm infants (Strong Recommendation).

3. **Rescue surfactant** may be considered for infants with hypoxic respiratory failure attributable to secondary surfactant deficiency (eg, pulmonary hemorrhage, meconium aspiration syndrome, or sepsis/pneumonia)

4. Preterm and term neonates who are receiving surfactant - managed by nursery and transport personnel with the **technical and clinical expertise** to administer surfactant safely and deal with multisystem illness.

KEY MESSAGES

- Role of Surfactant in SDD
- Surfactant vs CPAP
- Early vs Delayed
- Types of surfactant and comparative studies
- Mode of Delivery-INSURE/InRecSure
- LISA/MISA/MIST/LMA/Nebulization/Pharyngeal

THANK YOU

