

Dr Anup Thakur Sir Ganga Ram Hospital New Delhi

Scope

- Importance of Neuro-monitoring esp HIE
- Tools
 - Neurological Examination
 - Conventional cEEG
 - Amplitude integrated EEG
 - Near Infra-red Spectroscopy
 - MRI brain
 - MR spectroscopy
 - Ultrasonography and Dopplers
 - Heart rate variability, Biomarkers and VEP/SEP

Introduction

- Neuro-monitoring –Brain function
 - Functional activity/Structural /Oxygenation/Blood Flows/Metabolites
 - Continuous/Real time/Intermittent
- Provides critical diagnostic information
- Real time assessment of irreversible neuronal loss/injury
- Individualised Neuroprotective and Neuro-restorative therapy
- Prognostic Information

stage		Stage-1(mild)	Stage- 2(moderate)	Stage-3(severe)	
Level conciousness	of	Hyperalert; irritable	Lethargic or obtunded	Stuporous, comatose	
Muscle tone		Normal	Mild hypotonia	Flaceid	
Autonomic function		Generalized sympathetic	Generalized parasympathetic	Both system depressed	
Pupils		Mydriasis	Miosis	Midposition,often unequal; poor light reflex	
Seizures		None	Common ,focal or multifocal	Uncommon (excluding decerebration)	
Duration symptoms	of	<24 hours	2 to 14 days	Hours to weeks	
Outcome		About 100% normal	80% normal, abnormal if symptoms more than 5 to 7 days	About 50% die, remainder with severe sequalae	

Peak score of 15 or more				
positive predictive value 92%				
negative predictive value of 82% for				
abnormal outcome				

	Cut-off value	AUC (95% CI)	Sensitivity	Specificity
Thompson score	11	0.84 (0.75-0.91)	0.76	0.83
aEEG	CLV or worse	0.84 (0.76-0.91)	0.60	0.93

From: Early Neurodevelopmental Assessments for Predicting Long-Term Outcomes in Infants at High Risk of Cerebral Palsy

JAMA Netw Open. 2024;7(5):e2413550. doi:10.1001/jamanetworkopen.2024.13550

Receiver Operating Characteristic Curve for Hammersmith Infant Neurological Examination Scores in Predicting Cerebral Palsy and Cognitive ImpairmentThe area under the curve was 0.88 (95% CI, 0.79-0.97) for cerebral palsy (A) and 0.62 (95% CI, 0.51-0.73) for cognitive impairment (B).

Conventional cEEG

- Spot EEG/ cEEG (24 h or more)/Video EEG
- Gold standard for seizure detection
- Electrographic Seizures
 - Sudden, repetitive, evolving & stereotyped episode of abnormal electrographic activity with amplitude of atleast 2uV & : duration of 10 secs
- Prognostication based on **background**

Conventional cEEG

• Electrographic Seizures

- Avoid over-treating non-epileptic movements or undertreating true seizures.
- Sub-clinical seizures
- Reduction of dose and duration of AEDs
- High Electrographic activity –risk factor for mortality/Poor NDO
- Background
 - Normal
 - Excessive Discontinuity
 - Low amplitude/Burst Suppression
 - Asymmetry-lateralised brain injury

Sir Ganga Ram Hospital

Prognostication

• Bad prognostic indicators-

EEG Background	Neurological Sequelae
Normal	≤10%
Severe abnormalities [†]	≥90%
Moderate abnormalities [‡]	~50%
 *Based primarily on data reported in	references 401, 402, and 404
and includes both full-term and pre	emature infants.
[†] Burst-suppression pattern, prolonger	d (>20-second) interburst inter-
val, marked voltage suppression, a	and electrocerebral silence.
[‡] Voltage asymmetries and "immaturity"	ty.''

- Burst suppression pattern associated with unfavourable outcome.
- Predominant interburst interval >20 sec is associated with poor outcome.
- Abnormal EEG persisting at 48 hours is associated with poor outcome.
- Good prognosis indicators-
 - Early return of sleep wake cycling
 - Normalisation of background confers good prognosis.

Amplitude Integrated EEG (aEEG)

- •Modification of raw EEG
- •Special Wide band Filter-<2hz to >15Hz
- •Semi-logarithmic amplitude compression
 - Linear between 0 and 10 mcv
 - Logarithmic from 10 to 100 mcv
- •Peak-to-peak Rectification/Monophasic
- •Time Compression

aEEG Signal Processing

- Amplification of EEG signal
 from P3/P4
- Filtering:
 - < 2Hz, > 15Hz: Sweating and muscle artifact
 - Asymmetric band pass filtering

• Rectification and smoothing - Of EEG wave

Upper/Lower Margins

Al Naqeeb (Pediatrics 1999)

Normal (UM>10µv; LM>5µv)

Moderately abnormal (UM>10µv; LM≤ 5µv)

Severely abnormal (UM<10µv; LM≤ 5µv)

Seizure activity was defined, but not SWC

Suggested Classification of aEEG Patterns in Preterm and Term Infants Background Pattern- Hellstorm and Westas 2006

- Continuous (C): continuous activity with lower (min. amp. (5)–7–10 mV max. Amp. 10–25(–50) mV.
- Discontinuous (DC): discontinuous background ,min. amp. variable, but below 5 mV, max. amp. above 10 mV.
- Continuous low voltage (CLV): continuous background pattern of low voltage (around or below 5 mV).
- Burst suppression (BS): discontinuous background with min. amp. without variability at 0–1(2) mV, and bursts with amp>25 mV.
 - BS+ denotes burst density 100 or > bursts/h, and
 BS means burst density < 100 bursts/h.
- Inactive, flat (FT): mainly inactive (isoelectric) background <5 mV

Included

- SWC
- Seizures

Amplitude Integrated EEG (aEEG)

- Global Electrocortical Activity
- Limited number of electrodes
- Will not localize lesion/May not see focal seizures
- Poor Outcome
 - Severe background pattern within 6 h
 - Delayed onset of SWC after 36 hours after birth
- In infants with good outcome-background pattern normalises by 24-36 hours when treated with normothermia and by 48-72 hours when treated with hypothermia

	Neonatal Encephalopathy (NE) (n = 65)							
		Ν	Ioderate NE (n = 39)		Seve (n :	re NE =26)		
		Γ						
	aEEG findings	Normal 14 (35.8)	Moderate 21 (53.8)	Severe 4 (10.2)	Moderate 05 (80.7)	Severe 21(19.2)		
	Composite Outcome	0	11/52 2)	(100)	02/(0)	20/05 2)		
	Abnormal	0	11(52.3)	4(100)	03(60)	20(95.2)		
	Normal	11(78.5)	08(38.0)	0	02(40)	01(4.7)		
Figure 2 of	Lost to Follow up	03(21.4)	02(9.5)	0	0	0		
Figure 2. aE Table 3. Pre	Lost to Follow up EG abnormality in mode dictive ability of clinical	03(21.4) erate and sever staging, aEEG, Sensitivity	02(9.5) e encephalopathy EEG, and neuroi	0 y (Levene staging maging for adver pecificity	0) and their compositions rse neurodevelopm PPV	0 site outcome. eent.	NPV	
Figure 2. aE Table 3. Pre Sarnat Staging	Lost to Follow up EG abnormality in mode dictive ability of clinical	03(21.4) erate and sever staging, aEEG, Sensitivity 63.1	02(9.5) e encephalopathy EEG, and neuroi S	0 y (Levene staging maging for adver pecificity 86.4	0) and their compositions rse neurodevelopm PPV 88.9	0 site outcome. eent.	NPV 57.6	
Figure 2. aE Table 3. Pre Sarnat Staging Abnormal aEEG	Lost to Follow up EG abnormality in mode dictive ability of clinical	03(21.4) erate and sever staging, aEEG, Sensitivity 63.1 (46–77) 100 (88.5–100)	02(9.5) e encephalopathy EEG, and neuroi Si (6	0 y (Levene staging maging for adver pecificity 86.4 4.0–96.4) 54.2 3.2–73.8)	0) and their composition rse neurodevelopm PPV 88.9 (69.7–97.1) 77.5 (63.0–87.7)	0 site outcome. eent.	NPV 57.6 (39.4–74.0) 100 (71.6–100)	
Figure 2. aE Table 3. Pre Sarnat Staging Abnormal aEEG	Lost to Follow up EG abnormality in mode dictive ability of clinical	03(21.4) erate and sever staging, aEEG, Sensitivity 63.1 (46–77) 100 (88.5–100) 100	02(9.5) e encephalopathy EEG, and neuroi Si (6 (3	0 y (Levene staging maging for adver pecificity 86.4 4.0–96.4) 54.2 3.2–73.8) 92.8	0) and their composition rse neurodevelopm PPV 88.9 (69.7–97.1) 77.5 (63.0–87.7) 96	0 site outcome. hent.	NPV 57.6 (39.4–74.0) 100 (71.6–100) 100	
Figure 2. aE Table 3. Pre Sarnat Staging Abnormal aEEG Severely abnorm	Lost to Follow up EG abnormality in mode dictive ability of clinical	03(21.4) erate and sever staging, aEEG, Sensitivity 63.1 (46-77) 100 (88.5-100) 100 (82.8-100) 69.4	02(9.5) e encephalopathy EEG, and neuroi Si (6 (3 (6	0 y (Levene staging maging for adver pecificity 86.4 4.0–96.4) 54.2 3.2–73.8) 92.8 4.2–99.6) 75	0) and their composition rse neurodevelopm PPV 88.9 (69.7–97.1) 77.5 (63.0–87.7) 96 (77.7–99.8) 80.6	o site outcome. eent.	NPV 57.6 (39.4–74.0) 100 (71.6–100) 100 (71.6–1) 62.1	
Figure 2. aE Table 3. Pre Sarnat Staging Abnormal aEEG Severely abnorn Standard EEG	Lost to Follow up EG abnormality in mode dictive ability of clinical	03(21.4) erate and sever staging, aEEG, Sensitivity 63.1 (46–77) 100 (88.5–100) 100 (82.8–100) 69.4 (51.7–83.1)	02(9.5) e encephalopathy EEG, and neuroi (6 (3 (6 (5	0 y (Levene staging maging for adver pecificity 86.4 4.0–96.4) 54.2 3.2–73.8) 92.8 4.2–99.6) 75 2.9–89.4)	0) and their composition rse neurodevelopm PPV 88.9 (69.7–97.1) 77.5 (63.0–87.7) 96 (77.7–99.8) 80.6 (61.9–91.9)	0 site outcome. hent.	NPV 57.6 (39.4–74.0) 100 (71.6–100) 100 (71.6–1) 62.1 (42.4–78.7)	
Figure 2. aE Table 3. Pre Sarnat Staging Abnormal aEEG Severely abnorn Standard EEG Neuroimaging	Lost to Follow up EG abnormality in mode dictive ability of clinical	03(21.4) erate and sever staging, aEEG, Sensitivity 63.1 (46-77) 100 (88.5-100) 100 (82.8-100) 69.4 (51.7-83.1) 73.7	02(9.5) e encephalopathy EEG, and neuroi (6 (3 (5	0 y (Levene staging maging for adver pecificity 86.4 4.0–96.4) 54.2 3.2–73.8) 92.8 4.2–99.6) 75 2.9–89.4) 70.8	0) and their composition rse neurodevelopm PPV 88.9 (69.7–97.1) 77.5 (63.0–87.7) 96 (77.7–99.8) 80.6 (61.9–91.9) 80	o site outcome. eent.	NPV 57.6 (39.4–74.0) 100 (71.6–100) 100 (71.6–1) 62.1 (42.4–78.7) 62.9	

prognostication in neonatal encephalopathy? J Matern Fetal Neonatal Med. 2022 Dec;35(25)

Del Rio R et al. Amplitude integrated Electroencephalogram as a prognostic tool in neonates with HIE:A Systemic Review. Plos One.2016 Nov 1;11(11):e0165744

Near Infra-red Spectroscopy

- Detector emits infrared light
- Absorbed differentially by hemoglobin
- Residual light reflected back-detectors
- Calculates regional oxygen saturation (rSO2)

 $\text{RSO}_2 = \frac{\text{HbO}_2}{(\text{HbO}_2 + \text{HHb})}$

- Normal Cerebral rSO2 is around 60% to 75%
- Fractional tissue oxygen extraction (FTOE)
- Balance between O2 Delivery and consumption
 - FTOE=[(SaO2–rSO2)/SaO2]

Regional Cerebral Oxygenation Saturation SGRH Data during transition

rSO2 & Brief Hypoxic Episodes

rSO2 & Hypo/Hypercarbia

rSO2 & Seizure Activity

NIRS changes in HIE

cSO2 increases over 1st 24 hrs

cFTOE decreases over 1st 24 hrs

Fig. 1. Trend of hourly mean absolute CrSo2 values in 3 groups of infants undergoing TH with none/mild (a), moderate (b) and severe (c) grade of overall MRI injury. The mean values in the group are marked with a solid triangle while the individual infants are represented by thin black lines. $CrSO_2$ in infants with no or mild MRI injury (top panel) remains relatively stable while in infants with moderate (middle panel) and severe (bottom panel) $CrSO_2$ shows a trend towards an early increase.

Examples -Prognostic Value of NIRS for NDO

- Post cardiac surgery
- Cerebral oxygenation and hypoxic ischemic encephalopathy (HIE)
 - Between 24-36 hrs, higher CrSO2 –increased odds of mod-severe abnormalities on brain MRI
 - Per 10% increase in Crso2, (OR 3.78 CI 1.23-11.6), Max at 30 hr
 - CrSO2 increased more rapidly in infants with greater injury
 - Higher CrSO2 beyond 24 hrs correlates with greater odds of worse BSID scores.
- Hypotension

 \circ cRSO2 <50% -adverse neurodevelopmental outcomes

MRI Brain

MRI Findings

T1-PLIC Sign

DWI-Diffusion restriction in posterior limb of internal capsule DW1-Diffusion restriction in Basal ganglia and thalamus (BGT) T2- loss of differentiation in temporo-occipital lobe DW1-restricted diffusion in temporo-occipital lobe

Patterns of brain injury in term neonatal encephalopathy. J Pediatr. 2005;146:453-460. Miller Sp et al.

	PPV	NPV	SGRH
T1 T2 abnormalities (n=122)			
PLIC score	88	63	Sir Ganga Ram Ho
Mod/sev in BGT	88	68	
Mod/Sev in white matter	84	54	
Mod/sev in cortical gray matter	89	58	
Diffusion abnormalities (n=121)			
PLIC score	87	60	
Mod/sev in BGT	89	65	
Mod/Sev in white matter	85	55	
Mod/sev in cortical gray matter	89	59	

Cheong JL et al; Prognostic utility of MRI in neonatal HIE:substudy of a randomised trial. Arch Pediatr Adolesc Med. 2012 Jul 1;166(7):634-40

MR Spectroscopy

- Metabolic status in the tissue-often precedes anatomical changes
- Different metabolites-characteristic resonant frequencies
- X axis- chemical shift axis
- Y-axis-signal intensity
- Voxels

MR Spectroscopy

High Lac/Cr, low NAA/Cr and low NAA/Cho ratios within examined regions of the brain including deep grey matter nuclei as well as white matter are associated with an adverse outcome in infants with perinatal asphyxia

In first 2 weeks, severity of decline of PCr/Pi associated with worse outcome at 4 years

Cranial Ultrasound & Doppler

Dopplers and Cerebral Blood Flow

Anterior Cerebral A

CBF	2-8 h (n=50)	24 h (n=75)	Day 3 (n=71)	Day 7 (n=72)	Day 14 (n=70)	Day 28 (n=55)	P value
PSV	26.53 (8.56)	29.96 (6.41)	31.8 (7.62)	36.29 (8.29)	41.69 (7.39)	51.35 (9.36)	<0.001 (5,6)
EDV	9.22 (2.91)	10.88 (2.85)	10.87 (2.8)	11.51 (3.47)	11.98 (3.23)	13.9 (3.24)	0.001 (6)
MV	17.75 (3.97)	17.8 (3.92)	18.34 (3.48)	20.48 (5.3)	21.69 (3.82)	25.84 (3.27)	0.001(6)
RI	0.64 (0.08)	0.64 (0.06)	0.65 (0.08)	0.68 (0.08)	0.71 (0.07)	0.72 (0.07)	0.09

Data are presented in Mean ± SD. Repeated Measures ANOVA test used followed by multiple comparisons using Bonferroni corrections between baseline to other time points. 5=Day 14 and 6=Day 28. PSV-Peak systolic velocity. EDV-End diastolic velocity, MV-Mean velocity and RI-Resistive index.

Thakur A, Jain P, Modi M, Singh A, Kansal B, Kler N. Normative Values of Cerebral Blood Flow Velocities in Very Low Birth Weight Neonates During First 28 Days of Life. Indian Pediatr. 2024 Sep 15;61(9):835-838.

Abnormal RI associated with significantly higher risk of death/Abnormal neurodevelopment at 6-12 months.(75% vs 10%) RR- 7.5 (95% CI 2.0- 8.6)-Kumar et al Indian Pediatr 2016;53;1079-82

Condition	Physiology	Findings
Hypovolemia/Hypotension	Impaired autoregulation	Beat to beat variability/reversal may precede IVH
PHVD	Increased ICP	High PSV, low diastolic flow-Inc RI
HIE esp 6-24 hrs Stroke	Luxury perfusion, increased diastolic flow	Decreased RI, <0.55 (poor outcome) If persists after TH-poor outcome

Miscellaneous

- Heart Rate Variability-Autonomic
 - LFn (Normalised LF)- reflects sympathetic activity
 - HFn (Normalised HF)- reflects parasympathetic activity
- Evoked Potentials-VEP/SEP
- Biomarkers
 - Brain specific proteins eg neuron specific enolase,S 100,Glial acidic protein etc or signaling molecules cytokines/trophic factors
 - Blood
 - CSF

Key Messages

- EEG- Seizures/Severe Background
- Amplitude EEG-Early severe persistence
- NIRS-rSO₂
- MRI-Patterns of injury-High PPV
- MRS-Metabolites
- USG and Dopplers-Patterns
- Evoked Potentials
- HR Variability and Bio-Markers

Thank you

