Brain Cooling: Missing the Therapeutic Window

Strategies to Overcome Hurdles in Clinical Practics

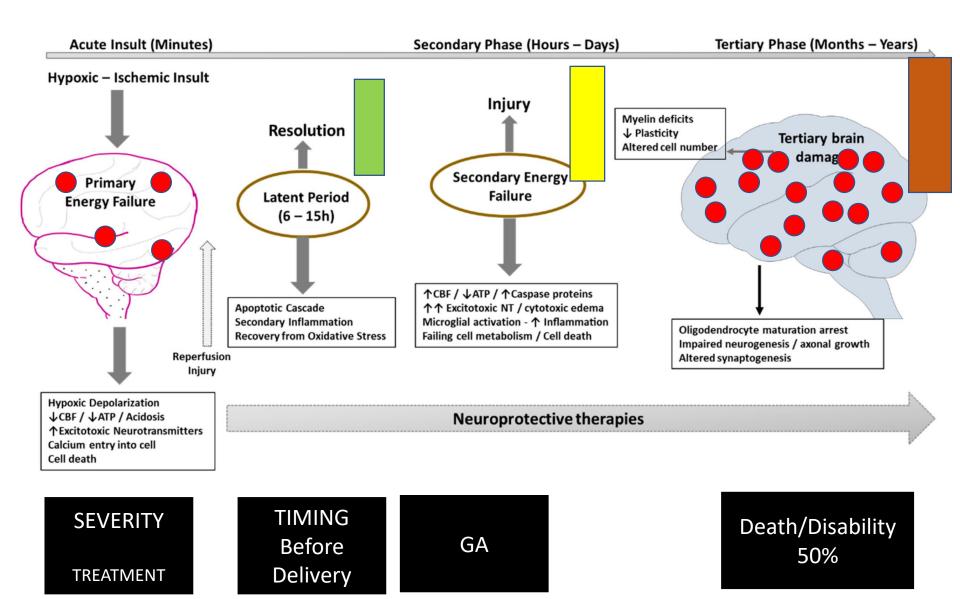
Dr. Kumar Ankur

Director & HOD Dept of Neonatology BLK MAX SS HOSPITAL & MAX SS DWARKA DELHI

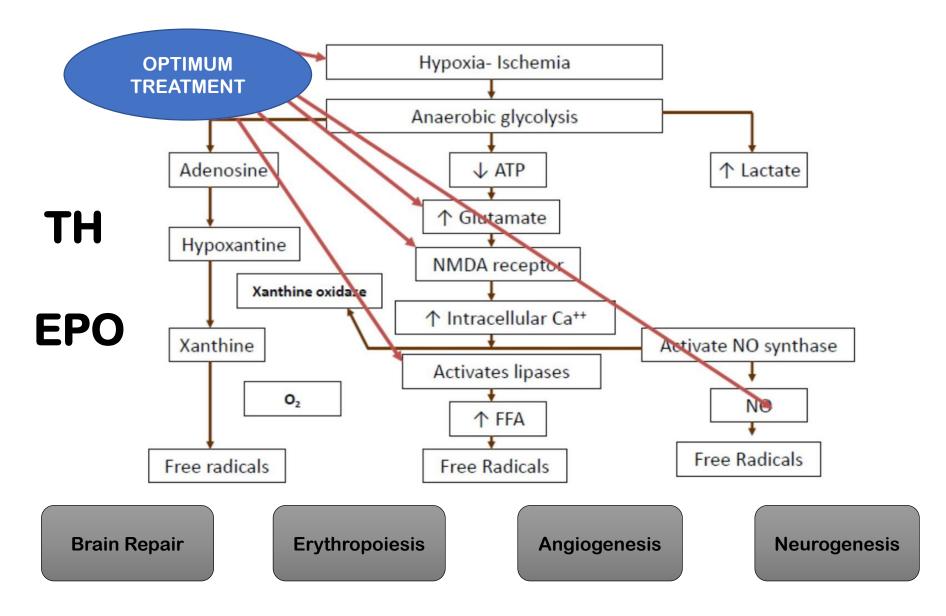
Objective

Brain Selection

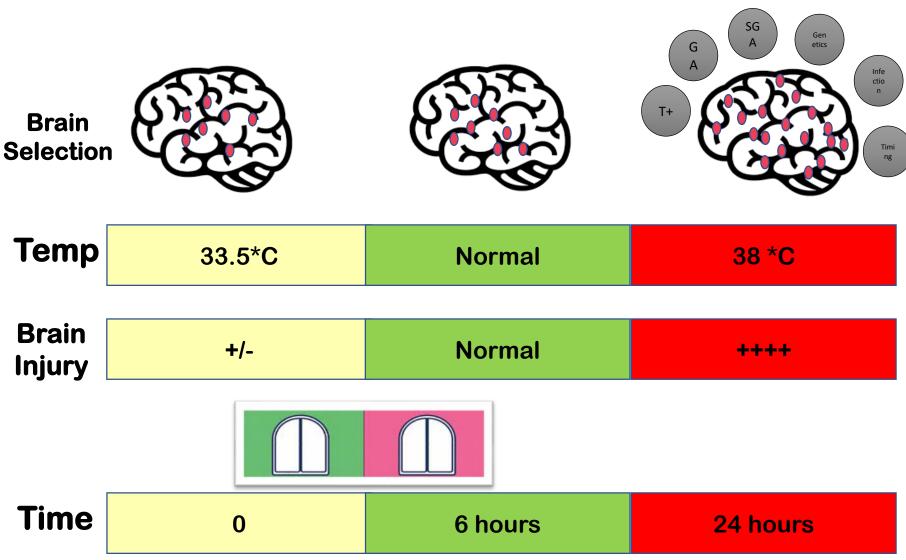
Selecting Right Candidate



HIE Prevalence


Incidence	HIC	LMIC		
Incidence	1.5/1000	2.3-26.3/1000		
Death & Disability	44% → 29 % 2005 -2017	50 % +		

40% to 55% of HIE treated with TH will still suffer substantial neurologic disability in the future or will die.


PATHOPHYSIOLOGY OF HIE

MECHANISM OF PROTECTION

Selecting Right Candidate

TH in HIC

	Death & Disability 18	month –aOR
2005 Cool Cap Study	0.61 (95% CI 0.34-1.09, P= 0.1)	
2005 NICHD Study	0.72 (95% CI 0.54-0.95, P=0.01)	28 %
2009 TOBY Study	0.86 (95% CI, 0.68-1.07, P=.17)	
2010 neo.nEURO	0.21 (95% CI 0.09-0.54, P=.001)	80 %
2010 China Study	0.47 (95% CI 0.26-0.84, P=0.01)	53 %
2011 ICE Study	0.77 (95% CI 0.62-0.98, P=0.03)	23 %

TH in HIC-Robust Studies

	Death/Disability 18 month aOR (95% CI)	CP at 18-24 moths aOR (95% CI)
2005 Cool Cap Study	0.61 (0.34-1.09, <i>P</i> =0.1)	0.75 (0.48-1.16)
2005 NICHD Study	0.72 (0.54-0.95, <i>P</i> =0.01)	0.68 (0.38-1.22)
2009 TOBY Study	0.86 (0.68-1.07, <i>P</i> =.17)	0.67 (0.47-0.96)
2010 neo.nEURO	0.21 (0.09-0.54, <i>P</i> =.001)	0.15 (0.04-0.60)
2011 ICE Study	0.77 (0.62-0.98, <i>P</i> =0.03)	0.92 (0.54 -1.59)

TH in HIC-Robust Studies

	NICHD Study 2005	Optimizing Cooling Strategy 2017
Death or Disability	44 %	29 %
Severe HIE	72 %	62 %
Mortality	24 %	9 %
Cerebral Palsy	19 %	19 %

Does neuroprotection

persist to childhood in HIC

6-7 year outcome of Cool Cap Trial

Guliet et al Peds Research 2012

- 46 % surviving children were assessed with WeeFIM
- Disability status at 18 month was strongly a/w WeeFIM ratings

6-7 year outcome of NICHD Trial

Shankaran JAMA 2014

- Primary Outcome: Death or IQ < 70
- RR 0.76 (0.58,0.99) / aRR 0.78 (0.61,1.01)

TOBY, Primary Outcome IQ >85

Azzopardi 2014

- Primary Outcome: Death or IQ >85
- RR 1.31 (1.01,1.71)

	NICHD (n=102)	TOBY (n=163)	Cool Gel (JIPMER) n=62	PCM (CMC) n=45
Low platelet		58%	13%	26%
DIC	18%	41%	6.5%	66%
PPHN	25%	10%		10%
Arrythmia	2%	5%	1.6%	6.6%
Sepsis	5%	12%	11%	9%
Hypotension	42%	77%	8%	13%

Level III NICU – Cardiac/IBP Monitoring. -- Blood bank – Imaging – ND assessment

NNT: 7 (5,10)

	Hypoth	ermia	Normoti	hermia			
Study or subgroup	Events	Total	Events	Total	Risk ratio (95% CI)	Weight (%)	Risk ratio (95% CI)
Akisu	0	11	2	10 -		1.2	0.18 (0.01 to 3.41)
CoolCap	36	116	42	118	+	19.3	0.87 (0.61 to 1.25)
Eicher	10	32	14	33	-	6.4	0.74 (0.38 to 1.41)
ICE	25	110	39	111	-	18.0	0.65 (0.42 to 0.99)
Lin	2	32	2	30		1.0	0.94 (0.14 to 6.24)
neo.nEURO	21	64	32	65	-	14.7	0.67 (0.43 to 1.02)
NICHD	24	102	38	106		17.2	0.66 (0.43 to 1.01)
Robertson	7	21	1	15		0.5	5.00 (0.69 to 36.50)
Shankaran	2	9	3	10		1.3	0.74 (0.16 to 3.48)
TOBY	42	163	44	162	+	20.4	0.95 (0.66 to 1.36)
Total (95% CI)		660		660	•	100.00	0.78 (0.66 to 0.93)
Total events	169		217	0.0		00	
				Favo hypo	urs Favo thermia normother		

TH remains the most

evidence-based therapy

for HIE

If they fulfil all of the following criteria

CLINICAL CONSIDERATION	THRESHOLD FOR COOLING
Perinatal insult	Convincing story of ischemic injury during delivery (subjective)
Gestational age at birth	>35 weeks
Age at time of cooling	<6 hours after birth
Apgar scores	<5 at 10 minutes after birth
Resuscitation efforts	Required at >10 minutes after birth
Cord blood samples (or blood gas samples obtained within 60 minutes of age)	pH <7.00, base deficit >16
Neurologic examination	Moderate to severe encephalopathy, as defined by Sarnat staging
Seizures	Presence of seizures (of note, this is not required for cooling but would prompt the initiation if seen at <6 hours of age)

Cooling Checklist

- Equipment setup
- Treatment Initiation
- Maintenance Phase
 - Rewarming Phase (0.5*C/h- avoid rapid)

Target Range- 32.5*C- 34.5*C with the Goal of 33.5*C

Equipment Choice

- Olympic Cool Cap
- Criticool with Curve Wrap
- Cincinnati SubZero blanket with gell roll
- Phase Contrast
- ICE Gel Pack
- Flower Pot (John Hopkins)
- Water filled Gloves
- Tecotherm HELIX mattress

Miracradle/PCM-4

Gelpack/Water bottle- 8

Tecotherm/Blanketroll - 6

Servo Vs. Non Servo

Meta analysis - Low tech methods

3 trials involving 467 infants

Death before discharge - RR- 0.60 (0.39-0.92)

Reduction in neurological morbidity- RR 0.46 (0.33-0.63)

Decrease in mortality or severe morbidity at 24 months <u>**RR 0.77(0.62-0.98)</u>**</u>

Rossouw G et al . Acta Pediatrica. 2015 Dec 1, 104 (12: 1217-28

Forest plot of studies using PCM or gel packs (death before discharge)

	Treat	ment	Co	ntrol			Ri	sk Ratio	Weight	
Study	Yes	No	Yes	No			with	h 95% CI	(%)	·
Gel packs										_
ICE	23	87	35	75			0.66[0.42, 1.0	4] 8.79	
Bharadwaj	3	59	6	56			0.50 [0.13, 1.9	1] 2.06	
Joy	1	57	4	54	-	· · ·	0.25 [0.03, 2.1	7] 0.86	
El Shimi	4	6	8	2			0.50 [0.22, 1.1	4] 4.49	
Tanigasalam	16	44	30	30			0.53[0.33, 0.8	7] 8.23	
Jose	18	56	28	42			0.61[0.37, 1.0	0] 8.17	
Heterogeneity	$T : \tau^2 = 0$	0.00	P = 0	.00%, H ² = 1.00		+	0.58 [0.45, 0.7	5]	
Test of $\theta_i = \theta_i$: Q(5) =	1.19), p =	0.95						
PCM										
Thayyil	4	13	2	14			1.88 [0.40, 8.9	0] 1.59	
Rakesh	9	51	16	44			0.56 [0.27, 1.1	7] 5.22	
Catherine	22	56	29	55			0.82 [0.52, 1.2	9] 8.70	
Aker (THIN)	2	23	1	24			2.00 [0.19, 20.6	7] 0.74	
Heterogeneity	y: $\tau^2 = 0$	0.00,	$I^{2} = 0$.00%, H ^z = 1.00		+	0.80 [0.55, 1.1	6]	
Test of $\theta_i = \theta_j$: Q(3) =	= 2.65	5, p =	0.45						
Overall							0.64 [0.52, 0.7	9]	
Heterogeneity	/: τ ² = (0.00,	F = 0	.00%, H ² = 1.00					82	
Test of $\theta_i = \theta_i$: Q(9) =	= 5.76	6, p =	0.76				All de	vices a	ire good
Test of group	differer	nces:	Q ₀ (1) = 1.91, p = 0.17	1/32	1/4 2	16	-Bette	er use S	Servo controlled
landom-effect Sorted by: yea		L mo	del		• • •		0004			controlled p monitoring/ Nursing 1:
					Juide	line Oct 2	2021 '			

TH remains the most evidence-based therapy for HIE, but it is not without clinical controversy.

- 1. What about deeper & longer cooling
- "When should we start cooling—as early as the delivery room?" (1st 3 hours)
- 3. "Given the efficacy of TH for moderate to severe HIE when started within 6 hours of birth, can we expand the therapy to infants with mild HIE?"
- 4. Can we start in Preterm
- 5. Outcome in HIC vs LMIC

Can greater neuroprotection be achieved with Deeper & Longer cooling

<u>Rationale</u>

• Animal Model- Deeper nuclei (BGT) temp higher in severe HIE & brain temp were lower at the end of TH compared Moderate HIE

Wu 2014, Owji 2017

TH in HIC- Deep & Long

	72 hrs	120 hrs	aRR (95 % CI)	33.5*C	32*C	aRR
Primary Outcome	32 %	32%	NS	32%	31 %	NS
Death	13 %	19 %	1.39 (1.02,1.89)	14 %	19%	NS
Moderate/ severe Disability	22 %	15 5	NS	21 %	16 %	NS
Cerebral Palsy	18 %	13 %	NS	16 %	16 %	NS

Arrythmia/iNO/ECMO/PPHN/LOS

Shankaran NICHD

Early Hypothermia – Before 3 hours

- Infants cooled within 3 hours of birth appear to have better neurodevelopmental outcomes compared with infants whose cooling commences between 3 hours and 6 hours
 - No difference in complications
 - PDI was significantly higher in the early cooling group
 - MDI, CP (no Difference)

Can we Cool between 6 -24 hours

	Cooled (n-78)	Non-cooled (n-79)	a RR
Death/Disability	24.4 %	27.9 %	0.86 (0.58-1.29)

Only some benefits

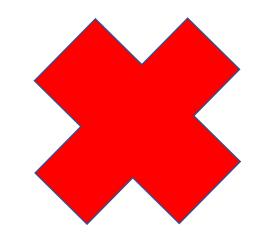
Laptook 2017

Marginally Better Other Outcomes

	Cool	ed (n=69)	No (<i>p</i> value	
	n	X±sd or %	n	X±sd, or %	
Bayley III scores					
Cognitive	68	91.5±16.3	70	86.6±16.6	.08
Language	66	85.9±19.7	69	85.8±21.4	.96
Motor	67	89.2±17.9	70	86.2±21.0	.36
CP: Moderate	3	4	4	6	1.0
Severe	5	7	4	6	
Blindness	2	3	3	4	1.0
Hearing impaired	3	4	4	6	1.0
Seizures + meds	7	10	2	3	.20

Can we start in MILD HIE

Therapeutic hypothermia for mild neonatal encephalopathy: a systematic review and meta-analysis


Ujwal Kariholu,^{1,2} Paolo Montaldo,¹ Theodora Markati,^{1,2} Peter J Lally,¹ Russell Pryce,^{1,3} Justinas Teiserskas,² Natasha Liow,² Vânia Oliveira,¹ Aung Soe,³ Seetha Shankaran,⁴ Sudhin Thayyil¹

	Cooli	ing	Usual d	care	Peto Odds Ratio Peto Odds Ratio		ds Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% CI	Year	0	Peto, Fixe	ed, 95% CI	
Battin 2001 (SHC)	1	5	2	6	12.3%	0.54 [0.04, 6.89]	2001				
Wyatt 2007 (SHC)	2	6	1	6	12.7%	2.26 [0.19, 27.57]	2007			•	/
Zhou 2010 (SHC)	1	21	1	18	10.0%	0.85 [0.05, 14.27]	2010				/
Jacobs 2011 (WBC)	4	16	8	24	42.7%	0.68 [0.17, 2.65]	2011				
Lally 2013 (WBC)	4	9	2	10	22.3%	2.92 [0.44, 19.25]	2013				
Total (95% CI)		57	Ĵ.	64	100.0%	1.09 [0.45, 2.66]					
Total events	12		14								
Heterogeneity: Chi ² =	2.16, df	= 4 (P	= 0.71);	$l^2 = 0^9$	6			0.01		10	100
Test for overall effect:	Z = 0.19) (P = 0).85)					0.01	0.1 1 Favours cooling	Favours usual care	100

Arch Dis Childhood 2020

Short term outcomes

- Length of stay
- Need for gavage feeding
- DIC
- Liver Dysfunction
- Cardiac Dysfunction

Abnormal Imaging (Injury more in watershed area)

USA/UK/European – still using however, they have not published any long term 5 year data

Ispita Goswami, Canadian Neonatal Network

- Not standard of care- AAP/NNF
- Difficult selection of Mild HIE- ? Who are actually at

highest risk

Need more robust trial before we should consider

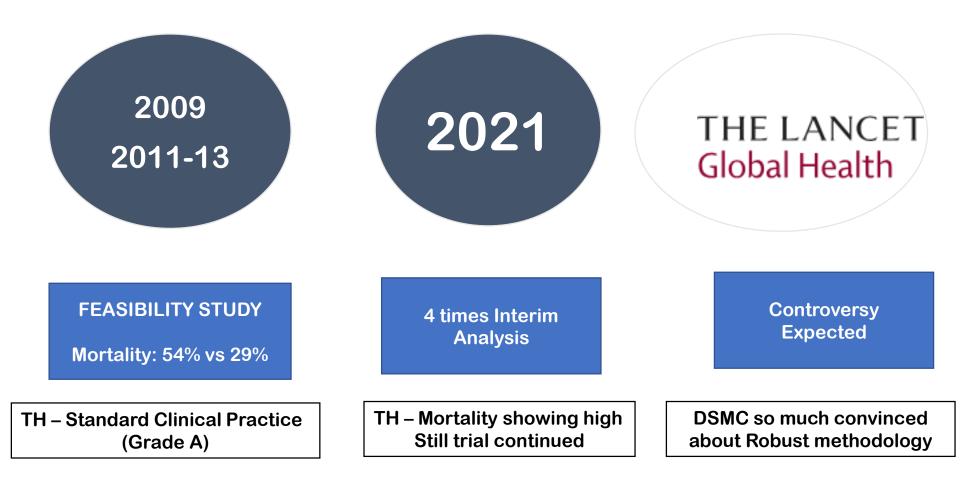
this in LMIC

People are trying EPO in MILD HIE

TH in LMIC

In <u>HIC</u>, therapeutic hypothermia significantly reduces the combined outcome of mortality or major neurodevelopmental disability by 18 months of age <u>(NNT: 7; 95 % CI: 5 to 10).</u>

(Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. 2013, CD003311.)


However, the benefit of therapeutic hypothermia in <u>LMIC</u> remains unconvincing with different studies and systematic reviews reporting conflicting results.

(Thayyil S, Pant S, Montaldo P, et al. Hypothermia for moderate or severe neonatal encephalopathy in low-income and middle-income countries (HELIX): a randomised controlled trial in India, Sri Lanka, and Bangladesh. Lancet Global Health. 2021;9: e1273–e1285.)

Hypothermia for Moderate or Severe Neonatal Encephalopathy in LMIC:HELIX Thayyil et al Lancet Global Health 2021

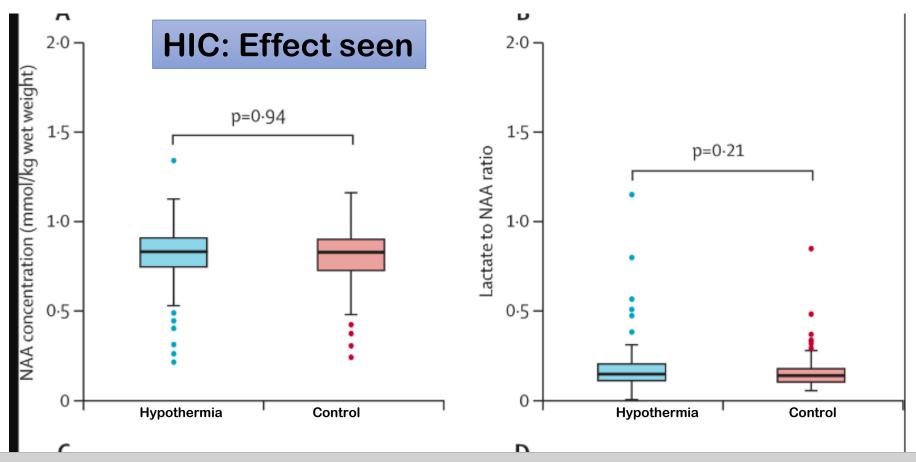
Design	Open label phase III RCT with masked outcome assessments	
Inclusion	408 term babies with moderate or severe encephalopathy from 7 tertiary neonatal units in South Asia	
Control group	Intensive care with avoidance of hyperthermia (core temperature of 36.5 C)	
Interventi on group	Whole body cooling (33.5 C) x 72 hours using Tecotherm Neo	
Primary outcome	Death or moderate or severe disability at 18 to 22 months	

Journey of HELIX Trial

Thayyil, SudhinThayyil, Sudhin et al. The Lancet Global Health, Volume 9, Issue 9, e1273 - e1285

Helix Trial

	Hypothermia (N=202)	Usual Care (N= 206)
Birth weight	2844+450	2939+455
GA	38.9+1.3	39+1.3
Outborn (%)	140 (70 %)	145 (70%)
Cord pH	6.94+0.25	6.97+2.01
Intubation at birth	89 (45%)	89 (44%)
Moderate Encephalopathy	161 (80%)	167 (81%)
Severe Encephalopathy	41 (20%)	39 (19%)
Seizure	149 (74 %)	150(73%)


Helix Trial

	Hypothermia (N=202)	Usual Care (N= 206)	P value
Gastric Bleeding	31 %	17 %	0.001
Persistent Hypotension	22 %	12 %	0.007
Pulmonary Hemorrhage	21 %	14 %	0.05
Prolonged Blood Coagulation	39 %	25 %	0.003
Severe Thrombocytopenia	16 %	7 %	0.0056
Culture + EOS	6 %	5 %	0.6
Death Before Discharge	72 (36 %)	49 (24 %)	0.009

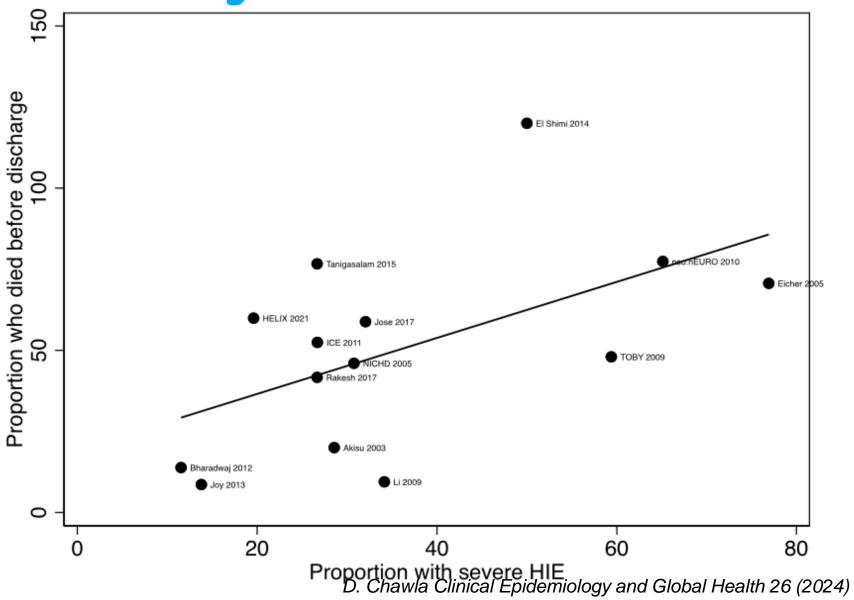
Helix Trial

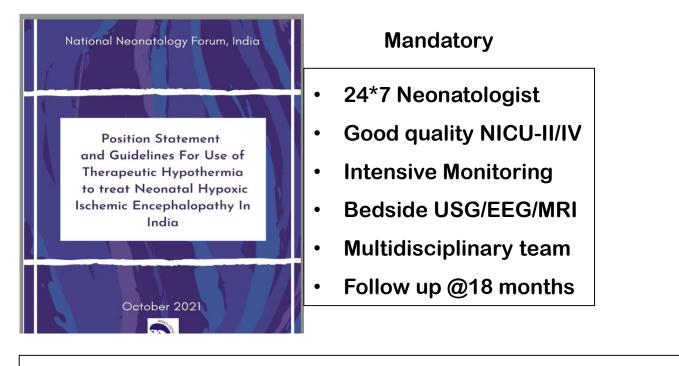
	Hypothermia (N=202)	Usual Care (N= 206)	P value
Death or Moderate or severe Disability	98 (50 %)	94 (47%)	NS
Death Untill 18 months	84 (42 %)	<mark>63 (31</mark> %)	0.02
Severe Disabilty among Survivors	13 %	21 %	NS
Microcephaly	30 %	27 %	NS
Survival without neurodisability	42 %	35 %	NS
Persistent Sz Disorder	3%	7 %	NS
Blindness	4 %	7%	NS
Hearing Impairment	3 %	4 %	NS

MRS (Thalamic NAA & Lac/NAA)

TH should not be offered as treatment for neonatal encephalopathy in LMIC, even when tertiary neonatal intensive care facilities are available.

HELIX 2021


Helix vs. HIC Trials


	HELIX	HIC
Birth weight	2891	> 3300 g
Outborn (%)	70 %	45 to 64 %
Perinatal Sentinel Events	11 %	43 to 74 %
Emergency CS	20 %	48 to 73 %
Hyperthermia in Control group	5 %	14 -38 %
MRI Brain	WMI > BGT	BGT
Fetal Monitoring	Not assesed	Universal
Seizure	74 %	33 to 61 %

NNF Position statement 2021

	Death Before Discharge RR (95 % CI)	
Admission temp < 36 *C	1.58 (1.18,2.12)	
	More death	
Cord pH not reported	0.96 (0.67, 1.37)	
	No benefit in survival	
Outborn neonates	0.74 (0.53, 1,02)	
	No benefit in survival or more death	

Severity of HIE & Death

It is recommended that TH should be offered to neonates with HIE with gestational <u>age</u>

> 36 weeks, <6 hrs of age of life and with admission temperature 36-37.4.C, IF they

fulfil all of the following criteria:

During preparation for cooling if the neonate's encephalopathy <u>has improved</u> (becomes mild or normal), therapeutic hypothermia may be deferred and neonate observed closely.

TH in LMIC-Studies

Color coded: Risk of Bias- Red...Amber...Green

	Death/Disability 18 month
2021 HELIX	1.06 (0.87,1.30)
2010 Zhou	0.63 (0.44,0.91)
	0.92 (0.77,1.10)
Metanalysis	Mortality at hospital discharge

2021 HELIX	1.36 (1.05,1.77)
9 studies (2003-2019)	0.73 (0.51,1.03)
6 studies (2012-2020) Same center	0.60 (0.45,0.80)

Supplement to: Thayyil S, Bassett P, Shankaran S. Questions about the HELIX trial—Authors' reply. Lancet Glob Health 2021; 9: e16

Hypothermia for Other Conditions

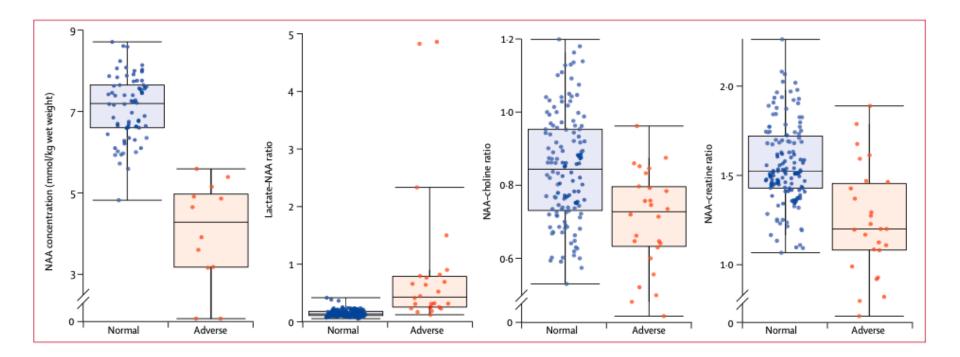
- Major ICH
- Postnatal Collapse
- Congenital Heart Disease
- Surgical conditions

No evidence of safety & efficacy

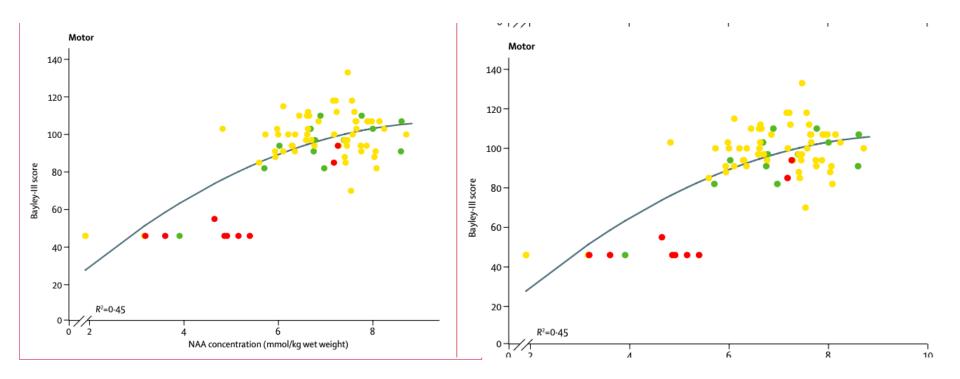
Smith 2014

Hypothermia For Preterm HIE

- AAP/NNF- 35 weeks or more
- TOBY registry reports cooling of infants who are <
 36 weeks- No long term data
- VON registry No outcome data for < 36 weeks GA


Single Centre (2017-2015) 33-35 weeks	Death Disability	DIC	Seizure	Hypotension	Persistent Acidosis
N=30	4 (8 lost)	50%	43 %	40 %	37 %

Herriera, 2018


Which Investigations correlates well with long term outcome

MARBLE Study

 Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy

NAA Level & Severity of HIE

Correlation with Bayley Score at 2 years of age

Best Prognostic Marker

	SS (%)	SP (%)	Post TH effect
Discharge Neurological Exam	26	95	Yes
a EEG	45	92	Yes
 MRI Brain (Day 5) Cortex BGT PLIC 	48 71 71	81 88 90	MRI Brain better with IQ> 70
Diffusion MRI	75	98	
MRS NAA/Cr Lac/NAA NAA 	65 89 100	89 91 <mark>97</mark>	HIC- Yes LMIC- No

HEAL Trial: MRI Brain prediction for Mild to Moderate HIE Similar to Normal neonates. Only Global/severe injury predicts death/NDI

MRI Brain after day 8- Pseudo normalization

Hypothermia Plus

Therapeutic Agent Adjunct therapy with TH	Stage on the pipeline of development
NOBLE GASES Xenon Argon	Clinical Trials completed Preclinical studies completed
Melatonin	New formulation Pre-clinical studies Regulatory bodies
Erythropoietin	Phase 1 study Phase Study starting in US
Allopurinol (ALBINO Study) MgSO ₄	Horizon 2020 study. 14 European Centers 2016- 2020 Mag-COOL Study Feasibility
N- Acetyl Cysteine Cannabinoids	

RESEARCH SUMMARY

Trial of Erythropoietin for Hypoxic-Ischemic Encephalopathy in Newborns

Wu YW et al. DOI: 10.1056/NEJMoa2119660

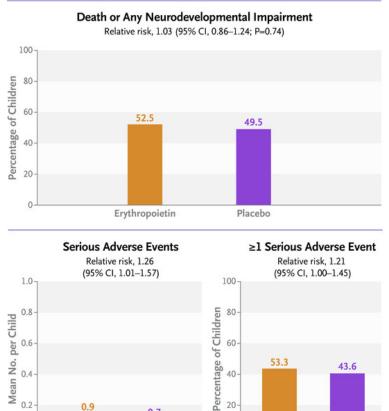
0.4

0.2

0.0

0.9

Erythropoietin


0.7

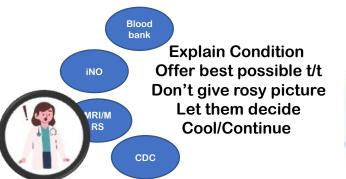
Placebo

36 weeks Mod/Severe Encephalopathy-500

Serious Adverse events: Death/HTN/DIC **Thrombosis/PPPH/ECMO/ICH**

53.3

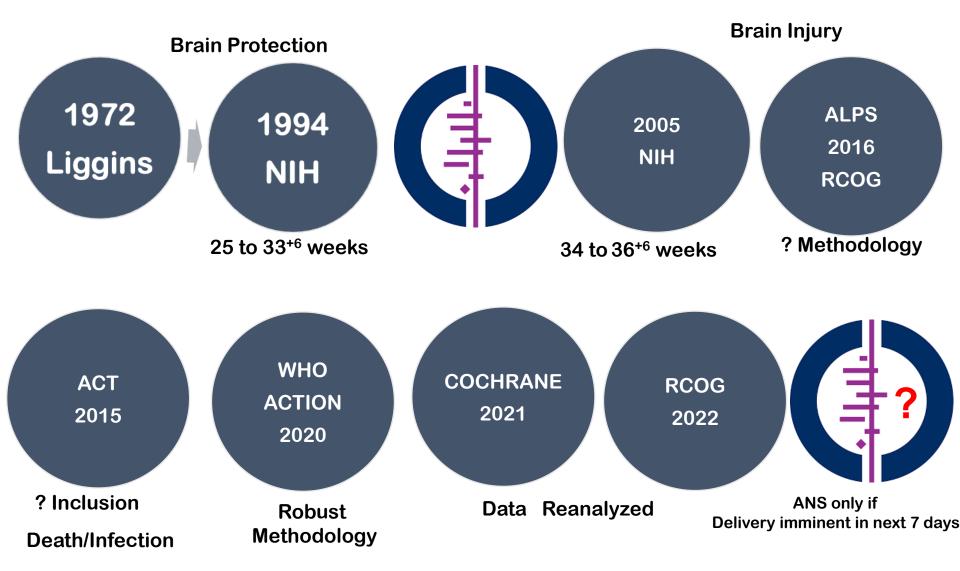
Erythropoietin

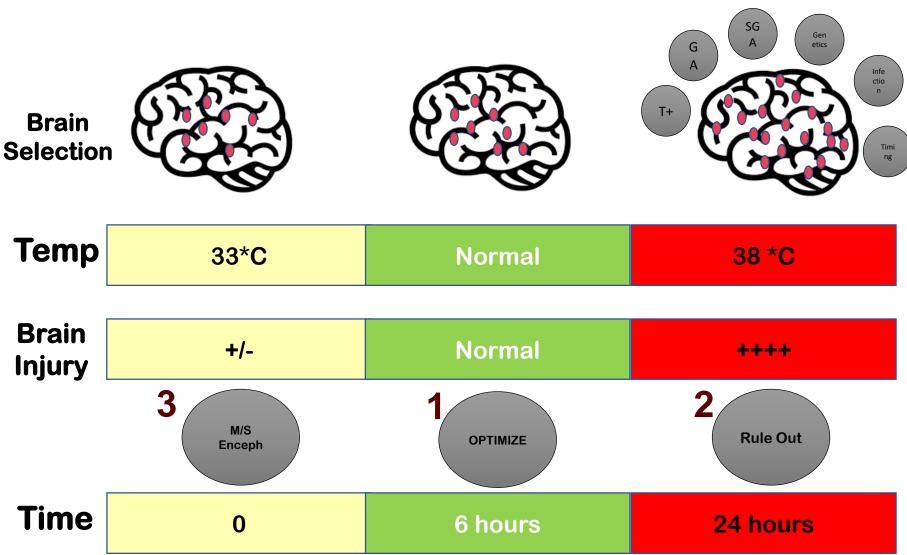

40-

20

43.6

Placebo


COOL 36 weeks			COOL
<u>DR</u> Intubated+CC	NICU	NICU	NICU
10 minute	45 minute	90 minute	120 minute
SPO2- 98 %	SPO2- 92 %	SPO2- 92 %	SPO2- 92 %
IPPV- 30/5/0.8	A/C- 15/5/0.3	A/C- 15/5/0.3	A/C- 15/5/0.3
Cord pH: 7.0/BE-18	CFT Poor-USG	Sz/CFM /sedation	No spont breath
OPTIMIZE	OPTIMIZE	OPTIMIZE	OPTIMIZE
- Temp	- Nurse: 1:1	- Nurse: 1:1	- Nurse: 1:1
- fiO2			
	- Rectal Temp	- Rectal Temp	- Rectal Temp
- Vent Setting	- No Hyper/hypothermia	- IBP/ABX/ASM	- IBP/ABX/ASM
- Transport	- RBS/Central Line/IBP	- Avoid Sedation	- Detail Exam ⁿ


180 minutes 36 weeks/2.9 kg No Congenital anomaly <u>Severe Encephalopathy</u> On Two Inotropes/Sz+

ANS has been one of the most important advances in perinatal care. Grade A

CrowleyPA.Antenatalcorticosteroidtherapy: a meta-analysis of the randomized trials, 1972 to 1994. Am J Obstet Gynecol. 1995;173(1):322-335. doi:10.1016/0002-0378(95)00222-8

Selecting Right Candidate

Conclusion

- TH at 33.5 *C for 72 hours is safe & effective for moderate to severe HIE > 35 weeks GA
- Subjective & Objective Criteria both important
- Prefer servocontrolled TH machine
- Avoid too deep/ too long/in PT/> 6 hours/ Sedation or any PLUS
- Prognosis important because we can't wait to see outcome till 18 months of age
 - MRI Brain not before 3 days
 - MRS NAA best